

DIPARTIMENTO DEI VIGILI DEL FUOCO, DEL SOCCORSO PUBBLICO E DELLA DIFESA CIVILE

Banca dati quesiti Idraulica

Prog.	DOMANDA	Risp.
1	Cosa accade alla pressione in un rimpicciolimento di condotta?	corretta
_	A) diminuisce	
	B) aumenta	Α
	C) resta costante	
2	Le linee di corrente e le traiettorie sono diverse fra di loro se:	
	A) il moto è uniforme	
	B) il moto è permanente	С
	C) il moto è vario	
3	Cosa fornisce il prodotto di una densità con il quadrato di una velocità?	
	A) una forza	
	B) un'energia	С
	C) una pressione	
4	Quale delle seguenti quantità è presente nella legge idrostatica?	
	A) il peso specifico	Α
	B) la velocità	
	C) la viscosità	
5	Nel distributore o ugello l'energia del salto idraulico viene:	
	A) trasformata tutta o in parte in energia cinetica	A
	B) trasformata tutta in energia meccanica	'`
	C) trasformata tutta in energia elettrica	
6	Nello studio dei fluidi, le forze di superficie:	
	A) sono le forze che si applicano attraverso le superfici di contorno	Α
	B) sono le forze che si esercitano sul fluido dall'esterno	
	C) si identificano con la forza di gravità	
7	Il diagramma di Moody si applica al regime di moto:	
	A) laminare	В
	B) laminare e turbolento	
0	C) turbolento Come varia la spinta che agisce sulla diga di un serbatoio completamente pieno ed	
8	artificiale?	
	A) Cresce all'aumentare della capacità del serbatoio	В
	B) E' indipendente dalla capacità del serbatolo	В
	C) E' indipendente dalla forma della diga	
9	Un fluido newtoniano:	
	A) non è viscoso	
	B) ammette sforzi tangenziali	В
	C) è sempre incomprimibile	
10	Come si ottiene la legge idrostatica p = γh?	
	A) dalla legge di conservazione dell'energia	
	B) dalla legge di conservazione della massa	C
	C) da un bilancio di forze	
11	Qual è il valore della viscosità cinematica dell'acqua a temperatura standard?	
	A) 1 m ² /s	
	B) 10mm ² /s	С
	C) 1 mm ² /s	
12	Da cosa dipende il volume di carena di un corpo che galleggia?	
	A) dalla forma dell'oggetto	В
	B) dal peso specifico del fluido	D
	C) dalla pressione agente sulla superficie	

13	In una corrente a superficie libera è necessario che il canale:	
	A) sia ovoidale	С
	B) sia sferico	
	C) sia cilindrico	
14	Dove è garantita in un fluido perfetto la conservazione del trinomio di Bernoulli?	
	A) lungo una linea di corrente	Α
	B) in tutto il dominio	
	C) lungo la normale alla linea di corrente	
15	Attraverso un tubo fluiscono7 cm³/min di acqua. L'estremità B del tubo si trova 50 cm più in	Α
	alto dell'estremità A ed è aperta e a contatto con l'atmosfera. Quanti cm ³ di acqua	
	fluiscono dal tubo in 6min?	
	A) $\Delta V = 42 \text{ cm}^3$	
	B) $\Delta V = 40 \text{ cm}^3$	
	C) $\Delta V = 38 \text{ cm}^3$	
16	La viscosità cinematica è data dal rapporto:	Α
	A) tra la viscosità dinamica e densità	
	B) tra la velocità e la viscosità	
	C) tra la densità e la massa	
17	Quale proprietà dei fluidi è responsabile dello sviluppo dello strato limite di velocità?	
	A) Il calore latente	В
	B) La viscosità	
	C) La velocità di reazione	
18	Quando avviene il distacco della corrente dalla parete?	
	A) la velocità cresce in direzione del moto	В
	B) la pressione cresce in direzione del moto	Ь
	C) la pressione diminuisce in direzione del moto	
19	Un parallelepipedo omogeneo avente densità $ ho$ sott'acqua ha una distanza CM tra centro di	
	spinta e metacentro che:	
	A) aumenta all'aumentare di $ ho$	В
	B) diminuisce all'aumentare di $ ho$	
	C) non dipende da $ ho$	
20	In un olio lubrificante newtoniano:	
	A) la viscosità dinamica μ dipende dalla temperatura	Α
	B) la viscosità dinamica μ dipende dalla velocità del fluido	
	C) la viscosità dinamica µ dipende dalla densità dell'olio	
21	La conservazione del trinomio di Bernoulli in un fluido perfetto è garantita lungo una linea	
	di corrente?	
	A) Si	Α
	B) Si ma in tutto il dominio	
	C) No solo lungo la normale alla linea di corrente	
22	Da quale delle seguenti unità di misura può essere espresso il rapporto tra una potenza	
	meccanica ed un peso specifico.	
	A) N/m^2	В
	B) m ⁴ /s	
	C) kg m/ s^2	
23	Cos'è la velocità terminale?	
	A) E' la minima velocità che può raggiungere un corpo in caduta libera	С
	B) E' la velocità che può raggiungere un corpo in caduta sul piano	
	C) E' la velocità massima che può raggiungere un corpo in caduta libera	<u> </u>

24	Un fluido in quiete esercita su una parete piana di area A con inclinazione di 45° rispetto alla verticale una forza pari a $F = p$ A, cosa indica p nella formula citata precedentemente?	
	A) la pressione del fluido nel baricentro dell'area A	Α
	B) la pressione del fluido nel centro di spinta dell'area A	
	C) la pressione del fluido nel baricentro dell'area A moltiplicata per 2	
25	Indicare tra le seguenti la grandezza cinematica:	
	A) il peso specifico	С
	B) la pressione	
	C) il rapporto tra un'energia e uno sforzo tangenziale	
26	Determinare la densità di un corpo omogeneo che ha un lato l = 1m è galleggia in acqua con	
	immersione h=0,10 m.	
	A) 981 kg/m^3	С
	B) 98,1 kg/m ³	
	C) 100 kg/m ³	
27	La potenza meccanica può essere espressa in:	
	A) $\log m^2/s^3$	Α
	B) Ns ² /m	,,
	C) kg m ² /s	
28	Data la portata, e individuata l'altezza di moto uniforme h ₀ , di una corrente a superficie	С
	libera, se risulta $h_0 < h_c$ dove hc corrisponde all'altezza critica si dice che il moto uniforme è:	
	A) in corrente critica	
	B) in corrente lenta	
	C) in corrente veloce	
29	In un punto di ristagno:	
	A) la velocità si annulla	Α
	B) la velocità è infinita	, ,
	C) la pressione è infinita	
30	La formula di Gauckler-Strickler si applica al regime di moto:	
	A) laminare	С
	B) laminare e turbolento	
	C) turbolento	
31	Ad una pressione relativa di circa -10000 Pa, a 20°C, l'acqua:	
	A) è allo stato liquido	Α
	B) cavità	
22	C) è allo stato di vapore	
32	Quale delle seguenti quantità compare nell'equazione di continuità per un fluido	
	comprimibile?	
	A) la densità del fluido	Α
	B) la viscosità del fluido	
22	C) la pressione del fluido Nel SI la viscosità cinematica di un fluido si misura in:	
33		
	A) m ² /s	Α
	B) cm/s	
24	C) Kg/s	
34	La forza trasmessa alla parete di un fluido, a quale altezza viene applicata se i due liquidi	
	sono separati da una parete verticale circolare aventi densità differente? A) La forza è applicata alla stessa altezza per i due fluidi	^
	B) La forza è applicata alla stessa altezza per i due fluidi B) La forza è applicata più in basso per il fluido meno denso	Α
	C) La forza è applicata più in alto per il fluido più denso	

35	Quale delle seguenti affermazioni in merito alla sezione di un getto verticale è corretta?	
	A) si assottiglia scendendo con la quota	Α
	B) si mantiene costante con la quota	
	C) nessuna delle precedenti risposte è corretta	
36	La cavitazione può avvenire:	
	A) a pressione atmosferica	С
	B) su uno stramazzo	
	C) in un restringimento di condotta	
37	Nello studio dei fluidi si distinguono:	
	A) esclusivamente forze di massa	В
	B) forze di massa e forze di superficie	_
	C) esclusivamente forza di gravità	
38	All'interno di un fluido reale si determinano degli sforzi tangenziale, da cosa dipendono?	
	A) dalla velocità di deformazione del fluido	Α
	B) dalla deformazione del fluido	, ,
	C) dal volume del fluido	
39	Indicare tra le seguenti la grandezza cinematica:	
	A) la portata	Α
	B) la massa	,,
	C) il rapporto tra una forza e una velocità	
40	Due liquidi sono divisi da una parete verticale di forma circolare. Essi hanno densità	
	differenti e medesimo livello.	
	A quale altezza viene applicata la forza trasmessa alla parete dal fluido più denso?	В
	A) più in alto che per il fluido più denso	J
	B) alla stessa altezza per i due fluidi	
	C) più in basso che per il fluido meno denso	
41	Calcolare la velocità media dell'acqua in un tubo di diametro 20cm², se la portata vale	
	$2(cm^3/s)$ ed il rapporto $\pi d^2 = 400cm^2$, quanto vale la velocità media dell'acqua?	
	A) v = 0,02 cm/s	Α
	B) v = 0,05 cm/s	
	C) v = 0,07 cm/s	
42	Una chiatta possiede in acqua dolce una massa complessiva di 1000 tonnellate con una	
	certa immersione. Quante tonnellate in più potrebbe trasportare con la stessa immersione	
	in acqua di mare (ρ_s =1025 kg/m³) :	В
	A) 1025 tonnellate	
	B) 25 tonnellate	
	C) 1,025 tonnellate	
43	Calcolare il raggio idraulico di una tubazione a sezione rettangolare che ha i lati che	
	misurano rispettivamente 10 cm e 40 cm.	
	A) 5 cm	В
	B) 4 cm	
	C) 26 cm	
44	Allo sbocco di una condotta in un serbatoio non raccordato la perdita di energia è:	
	A) pari al carico cinetico della condotta	Α
	B) pari a metà del carico cinetico della condotta	
	C) nulla	
45	Nel diagramma di Moody il coefficiente di resistenza è riportato:	
	A) in funzione del numero di Reynolds e della scabrezza relativa	Α
	B) esclusivamente in funzione del numero di Reynolds	
	C) in funzione della viscosità	

46	Cosa accade alla pressione lungo l'asse di un tubo orizzontale a sezione costante e rettilineo	
	sapendo che al suo interno scorre un fluido viscoso?	_
	A) è costante in tutti i punti	В
	B) varia linearmente con la distanza	
	C) ha distribuzione parabolica	
47	Cosa succede quando si ha un restringimento di una condotta?	
	A) diminuisce la pressione	Α
	B) diminuisce la quota	, ,
	C) diminuisce la velocità	
48	La pressione può essere misurata a partire dal vuoto assoluto, che si pone uguale a:	
	A) 1 atm	В
	B) 0 atm	Б
	C) -12 atm	
49	I fluidi sopportano sforzi di trazione?	
	A) Si, poiché tendono a perdere la loro identità scomponendosi negli elementi	
	costitutivi	В
	B) No, poiché tendono a perdere la loro identità scomponendosi negli elementi	ь
	costitutivi	
	C) Si, in specifiche condizioni di pressione	
50	Quale delle seguenti equazioni viene denominata come legge di Stevino?	Α
	A) $z + p/2 = cost$	
	B) z /p/? = cost	
	C) z - p-₹ = cost	
51	In un contenitore d'acqua cilindrico in rotazione attorno al suo asse verticale z, la vorticità	С
	misurata in direzione z risulta pari a -44 rad/s, valore costante entro il ±0,5% in qualunque	
	punto di misura. Calcolare la velocità angolare in gpm.	
	A) ω = -13 K rad/s	
	B) ω = -12 K rad/s	
	C) $\omega = -22 \text{ K rad/s}$	
52	Nello studio dei fluidi, le forze di massa:	
	A) sono le forze che si applicano attraverso le superfici di contorno	В
	B) sono le forze che si esercitano sul fluido dall'esterno	Б
	C) sono considerate sempre trascurabili	
53	Quando il baricentro delle masse di un galleggiante si trova al di sotto del centro di spinta :	
	A) l'equilibrio è incondizionatamente stabile	۸
	B) la stabilità dipende dalla forma del galleggiante	Α
	C) l'equilibrio è instabile	
54	La viscosità cinematica è una proprietà:	
	A) del fluido incomprimibile	۸
	B) del tubo scabro	Α
	C) del moto laminare	
55	Indicare tra le seguenti la grandezza cinematica:	
	A) il peso specifico	_
	B) la pressione	С
	C) l'accelerazione	
56	Calcolando il flusso di quantità di moto $\rho Q v$, dimensionalmente si ottiene:	
	A) una forza	Α
	B) una potenza per unità di superficie	А
	C) una velocità	
	C) una velocita	

57	Un getto d'acqua sottile di velocità v e sezione A investe in direzione normale la faccia di un cubo appoggiato su una superficie orizzontale. Assumendo che sia F la forza di attrito esercitata dal cubo sulla superficie, la velocità u con cui si sposta il cubo è: A) $z = v - \sqrt{\frac{F}{0.4}}$	
	A) $z = v - \sqrt{\frac{F}{\rho A}}$ B) $z = \sqrt{v - \frac{F}{\rho A}}$ C) $z = \sqrt{\frac{F}{\rho A}}$	A
	<u> </u>	
58	Indicare in quale dei casi seguenti sono presenti sforzi tangenziali.	
	A) fluidi reali in quiete B) fluidi perfetti in movimento	С
	C) solidi elastici deformati	
59	Lo sforzo normale è isotropo:	
33	A) nei fluidi reali in quiete	
	B) nei mezzi continui	Α
	C) nei solidi sottoposti a compressione	
60	Il rapporto tra la velocità del fluido e la velocità del suono nelle stesse condizioni è detto:	Α
	A) numero di Mach	' '
	B) numero di Reynolds	
	C) numero di Chezy	
61	La risalita capillare è inversamente proporzionale al:	Α
	A) diametro del tubo	
	B) volume di liquido presente nel tubo	
	C) alla viscosità del liquido	
62	La potenza assorbita da una pompa dipende anche:	
	A) dalla portata sollevata	A
	B) dalla pressione del fluido in arrivo	A
	C) dalla quota della pompa	
63	Per una data portata il livello che si fissa in uno stramazzo aventi parete sottile:	
	A) cresce linearmente all'aumentare della densità	В
	B) è indipendente dalla densità del liquido convogliato	
	C) cresce col quadrato della densità	
64	In un fluido perfetto è costante:	
	A) l'energia cinetica su un piano orizzontale	С
	B) la quantità di moto lungo una traiettoria	
CF	C) il trinomio di Bernoulli lungo una linea di corrente	
65	Il metacentro di un'imbarcazione si trova sempre:	
	A) sopra il baricentro B) sopra il centro di carena	В
	C) sotto il centro di carena	
66	In quale sezione la portata di una corrente lineare risulta essere la stessa?	1
00	A) Se il moto è permanente ed il fluido incomprimibile	
	B) Se il moto è permanente	Α
	C) Se il fluido è incomprimibile	
67	La tensione di vapore di un liquido dipende:	†
"	A) dalla pressione	
	B) dalla velocità	С
	C) dalla temperatura	

Pagina 7 di 85

		1
68	Calcolare quanto vale il volume di carena di una sfera che pesa 20 N sapendo che essa	
	immersa in acqua galleggia.	_
	A) circa 2 l	A
	B) circa 1 l	
	C) circa 0.5 l	
69	In tutti i punti di un serbatoio contenente due fluidi in quiete:	
	A) la pressione è costante	В
	B) l'energia è costante	
	C) la densità è costante	
70	Un corpo che galleggia in un fluido possiede una densità media:	
	A) minore di quella del fluido	Α
	B) pari al doppio di quella del fluido	
	C) uguale a quella del fluido	
71	Su una superficie piana la spinta totale esercitata da un dato fluido è uguale al prodotto	
	dell'area della superficie per la pressione che viene calcolata:	
	A) nel centro di spinta della superficie B) all'activa di Si forti della superficie	С
	B) all'estremità inferiore della superficie	
	C) nel baricentro della superficie	
72	Indicare quale tra le seguenti misure compare nell'equazione di continuità per un fluido	
	comprimibile.	
	A) la densità del fluido	Α
	B) la viscosità del fluido	
	C) la pressione del fluido	
73	A quale delle seguenti quantità è proporzionale la perdita di energia lungo una condotta?	
	A) alla lunghezza della condotta	Α
	B) al diametro della condotta	
7.4	C) al coefficiente di Gauckler-Strickler	
74	Calcolare la potenza utile di una pompa che viene utilizzata per sollevare una portata 100	
	l/s di fluido da una quota di 5m ad una di 10m sapendo che la densità del fluido è il 50%	
	superiore di quella dell'acqua. A) di circa 7,5 kW	Α
	,	
75	C) di circa 8,5 kW	
75	Una corrente lineare si dice in moto uniforme quando: A) la velocità è costante sulla sezione trasversale	
	B) la velocità è costante lungo ciascuna linea di corrente	В
	C) la velocità è costante su tutto il campo di moto	
76	Calcolando il rapporto tra uno sforzo tangenziale e un peso specifico si ottiene:	
70	A) una velocità	
	B) un volume	С
	C) una lunghezza	
77	In una condotta di un impianto di condizionamento entra una corrente con una portata	Α
''	uguale a 0,6 (m ³ /s) e l'area pari a 60 (m ²), determinare la velocità media della corrente.	
	A) V = 0,01 m/s	
	B) V = 0,05 m/s	
	C) V = 0,04 m/s	
78	Indicare da cosa dipende la pressione relativa presente sul fondo di un serbatoio.	
/6	A) la pressione atmosferica	
	B) il livello dell'acqua nel serbatoio	В
	C) la forma del serbatolo	
L	e _j in forma del sersacolo	<u> </u>

79	Indicare come cambia l' intervallo tra centro di spinta e metacentro in un parallelepipedo	
	omogeneo aventi densità pari alla metà della densità del fluido nel quale è immerso.	
	A) diminuisce all'aumentare di ρ	Α
	B) aumenta all'aumentare di ρ	
	C) è indipendente dal valore di ρ	
80	Si consideri un fluido pesante. Se il fluido è in quiete:	
	A) i punti che hanno pressione costante rappresentano piani orizzontali	Α
	B) i punti che hanno pressione costante rappresentano piani verticali	, ,
	C) i punti che hanno pressione costante rappresentano rette orizzontali	
81	Per quale delle seguenti sezioni il raggio idraulico è minimo data una lunghezza d?	
	A) sezione piena circolare di diametro d	В
	B) sezione piena triangolare equilatera di lato d	
	C) sezione piena quadrata di lato d	
82	Un corpo galleggia, per 1/3 del proprio volume è fuori dall'acqua, quanto sarà la sua densità	
	sapendo che il corpo è omogeneo?	
	A) 1/3 della densità dell'acqua	С
	B) 1/2 della densità dell'acqua	
	C) 2/3 della densità dell'acqua	
83	Qual è la posizione del centro di massa di un corpo galleggiante omogeneo?	
	A) sempre al di sopra del metacentro	В
	B) sempre al di sopra del centro di carena	
	C) sempre al di sotto del centro di carena	
84	Quanto sarà la portata su uno stramazzo di forma rettangolare raddoppiando il carico?	
	A) più che doppia	Α
	B) meno che doppia	
	C) praticamente invariata	
85	A quale profondità dalla superficie libera viene raggiunta la pressione assoluta di 2 bar in	
	fluido di densità pari a 0,5 g/cm³?	
	A) circa 20 m	С
	B) circa 10 m	
	C) circa 40 m	
86	In quale dei seguenti casi la traiettoria di una particella e una linea di corrente coincidono?	
	A) Quando il fluido è perfetto	С
	B) In ogni tipo di moto	
	C) Nel moto permanente	
87	Che tipo di perdita di carico si ottiene se raddoppiamo la scabrezza relativa di una condotta	
	nella quale scorre una portata in regime di moto laminare?	
	A) circa doppia dell'iniziale	С
	B) circa la metà dell'iniziale	
	C) uguale all'iniziale	
88	Per una data portata il livello che si stabilisce in uno stramazzo in parete sottile:	
	A) cresce linearmente all'aumentare della densità	В
	B) è indipendente dalla densità del liquido convogliato	
	C) cresce col quadrato della densità	
89	La viscosità di un fluido dipende:	
	A) dalla temperatura	Α
	B) dalla pressione	
	C) dalla velocità	
90	A quale delle seguenti leggi è paragonabile l'equazione di Eulero?	
	A) la legge di conservazione della massa	С
	B) la legge di stato	
	C) la legge di Newton	

91	In quale caso la pressione di un fluido pesante si riduce linearmente con la quota sapendo	
	che il fluido è in quiete?	6
	A) In ogni caso	С
	B) Quando il fluido è perfetto	
03	C) Quando il fluido è incomprimibile	
92	In un recipiente in depressione che direzione ha la spinta che agisce sulla chiusura superiore	
	del recipiente?	^
	A) verso il basso	Α
	B) direzione laterale	
	C) verso l'alto	
93	Il numero di resistenza in un tubo manufatto per un moto laminare è:	
	A) è costante	С
	B) è proporzionale al numero di Reynolds	
	C) è inversamente proporzionale al numero di Reynolds	
94	Il luogo dei punti occupati dalla stessa particella di fluido in istanti diversi si chiama:	
	A) filetto di fumo	Α
	B) linea di corrente	
	C) traiettoria	
95	Trascurando le perdite localizzate a parità di portata e duplicando la lunghezza di una	
	condotta nella quale scorre una data portata in regime di moto laminare, la perdita di	
	energia sarà:	С
	A) circa il 40% superiore all'iniziale	
	B) pari all'iniziale	
	C) doppia dell'iniziale	
96	In una condotta, nel calcolare la perdita di energia distribuita:	
	A) si ottiene sempre un valore proporzionale al coefficiente di Darcy	В
	B) si ottiene sempre un valore proporzionale alla lunghezza della condotta	_
	C) si ottiene sempre un valore inversamente proporzionale al diametro della condotta	
97	In merito alla formula di Darcy-Weisbach il coefficiente di resistenza:	
	A) dipende solo dalla scabrezza relativa, nel caso di moto turbolento pienamente	
	sviluppato	
	B) dipende solo dal numero di Reynolds, nel caso di moto turbolento pienamente	Α
	sviluppato	
	C) dipende sia dal numero di Reynolds, che dalla scabrezza relativa nel caso di moto	
	turbolento pienamente sviluppato	
98	La perdita di energia di tipo Borda non si verifica:	
	A) a pressioni molto basse	В
	B) in un fluido perfetto	
	C) in un fluido incomprimibile	
99	Calcolando il rapporto tra una pressione e un peso specifico si ottiene, dimensionalmente:	
	A) un volume	С
	B) una velocità	-
	C) una lunghezza	
100	Indicare quale valore può assumere la pressione relativa sul fondo di un contenitore che è	
	ermeticamente chiuso e	_
	A) la pressione può essere positiva o negativa	Α
	B) la pressione è sempre negativa	
	C) la pressione è sempre positiva	

101	Un liquido pesante è presente in un contenitore aperto a forma di parallelepipedo, esso	
	trasmette una spinta alle pareti del contenitore che:	
	aumenta col cubo del livello nel recipiente	В
	B) aumenta col quadrato del livello nel recipiente	
	C) diminuisce col cubo del livello nel recipiente	
102	La risultante delle forze esercitate da un fluido su una superficie piana agisce:	
	A) al di sotto del baricentro	Α
	B) al di sopra del baricentro	_ ^
	C) sul baricentro della superficie	
103	In un tubo orizzontale rettilineo avente sezione costante si muove un fluido viscoso,	
	indicare cosa accade alla pressione lungo l'asse del tubo.	
	A) può avere distribuzione parabolica o iperbolica	С
	B) è sempre costante in tutti i punti del tubo	
	C) varia linearmente con la distanza	
104	Aumentando la distanza tra due scafi di un catamarano	
	A) la distanza metacentrica resta invariata	
	B) la distanza metacentrica diminuisce	С
	C) la distanza metacentrica aumenta	
105	Indicare in quale dei seguenti casi un fluido reale può essere studiato come ideale?	
	A) in una condotta in regime laminare	
	B) in un serbatoio	В
	C) in un moto uniforme a pelo libero	
106	Quanto misura la velocità media di un fluido, presente in un impianto di condizionamento,	В
	in una condotta di acciaio rettangolare di 100 mm × 200 mm viene canalizzata aria calda,	
	con una portata di 0,2 m³/s.	
	A) 152 m/s	
	B) 10 m/s	
	C) 8 cm	
107	Cosa non si può ricavare dalle equazioni di Eulero?	
	A) la formula di Darcy-Weisbach	
	B) il teorema di Bernoulli	Α
	C) la legge idrostatica	
108	Per qualsiasi corpo la densità è definita come:	
100	A) rapporto tra massa e volume	
	B) prodotto tra massa e volume	Α
	C) rapporto tra il modulo della forza F agente e la superficie S su cui agisce la forza	
109	Per qualsiasi corpo la pressione è definita come:	
103	A) rapporto tra il modulo della forza F agente e la superficie S su cui agisce la forza	
	B) rapporto tra il modulo della forza agente e la massa del corpo	Α
	C) la forza che il corpo immerso in un fluido subisce per effetto del fluido stesso	
110	Quanto deve essere alto un tubo riempito di mercurio (d=13590 Kg/m³) per esercitare sulla	
110	base una pressione di 2 Atm (2, 026 \cdot 10 ⁵ Pa, g*d = 133317,9) sulla sua base?	
	A) h= 1,52 m	Α
	B) h= 1,70 m	
	C) h= 2,5 m	
111	La misura della rotazionalità di una particella di fluido è detta:	
111	A) vorticità	
	B) viscosità	Α
	C) uniformità	<u> </u>

112	Determinare la forza da applicare dall'interno di una nave per opporsi all'apertura della falla sulla fiancata, sapendo che la falla possiede un'area di 75 cm² a 4,5 m sotto la superficie di galleggiamento e che la densità dell'acqua marina è d=1030 Kg/m³. A) F= 30 N B) F= 341 N C) F= 450 N	В
113	Haran and Condition Continue to 0074 Nov. 3 Determinants Indicate	
113	Il peso specifico di un liquido è γ=9071 N·m ⁻³ . Determinarne la densità. A) ρ=925 kg·m ⁻³ B) ρ=95 kg·m ⁻² C) ρ=25 kg·m ⁻³	Α
114	Qual è il peso di una massa di liquido di 50 kg che si trova al polo (g=9,83 m· s ⁻²)? A) 350 kg·m ⁻³ B) 241 N C) 491,5 N	С
115	Nel Sistema Internazionale la tensione superficiale si misura in:	
	A) N·m ⁻³ B) N C) N·m ⁻¹	С
116	Un edificio è alto h=220 m sopra il piano campagna. Se all'estremità superiore della	
	tubazione di distribuzione di acqua (γ=9806 N·m ⁻³) deve aversi una pressione relativa	
	ρ ₁ =100 kPa, quale deve essere, in condizioni statiche la pressione nella tubazione al piano	
	campagna?	Α
	A) 2,26 MPa	/\
	B) 2,5 MPa	
	C) 52 MPa	
117	,	
117	Alla base di una colonna verticale per la distribuzione di gas illuminante in un edificio alto	
	h=180 m, il gas ha peso specifico γ_0 =34 N·m ⁻³ , alla pressione relativa p ₀ =147000 Pa. Ritenuto	
	il fluido in quiete, qual è il valore della pressione relativa del gas all'estremità superiore	
	della tubazione nel caso di gas incomprimibile?	В
	A) 14000 Pa	
	B) 140880 Pa	
	C) 18000 Pa	
118	Un serbatoio per acqua ha il fondo orizzontale di area A=12 m². Quanto vale il modulo S	
	della spinta sul fondo quando l'acqua nel serbatoio ha una profondità h=6 m sul fondo	
	stesso (γ=9806 N·m ⁻³)?	С
	A) 70602 N	C
	B) 9806 N	
	C) 706032 N	
119	Secondo il teorema di Bernoulli, nel moto permanente di un fluido perfetto pesante	
	incomprimibile:	
	A) il carico totale non si mantiene costante lungo ogni traiettoria	В
	B) il carico totale si mantiene costante lungo ogni traiettoria	
	C) Nessuna delle altre risposte è corretta	
120	Lungo le pareti scoscese di un'insenatura marina molto profonda, sono posti dei paletti	
	indicanti l'altezza in metri sotto il livello del mare. La pressione dell'aria sulla superficie è di	
	1 atm. Calcolare la pressione a cui sono sottoposti i pesci alla profondità di 2075 m:	
	A) 206,72 atm	Α
	B) 2075 atm	
	C) 20 atm	
<u> </u>	0, 20 000	

121	Lungo le pareti scoscese di un'insenatura marina molto profonda, sono posti dei paletti indicanti l'altezza in metri sotto il livello del mare. La pressione dell'aria sulla superficie è di 1 atm. Calcolare la pressione a cui sono sottoposti i pesci alla profondità di 975 m: A) 97,67 atm B) 201 atm C) 354 atm	А
122	Lungo le pareti scoscese di un'insenatura marina molto profonda, sono posti dei paletti indicanti l'altezza in metri sotto il livello del mare. La pressione dell'aria sulla superficie è di 1 atm. Calcolare la pressione a cui sono sottoposti i pesci alla profondità di 340 m: A) 75 atm B) 340 atm	С
400	C) 34,71 atm	
123	Indicare quale tra i seguenti materiali galleggia in acqua: A) legno di quercia B) alluminio C) argento	А
124	Indicare quale tra i seguenti materiali galleggia se immerso nella benzina:	
	A) sughero B) alluminio C) ghiaccio	А
125	Un contenitore d'acqua cilindrico ruota in senso antiorario attorno al suo asse verticale,	Α
	sapendo che	
	ω = 50 rad/s. Calcolare la vorticità delle particelle di liquido nel contenitore.	
	A) $\Omega = 100 \text{ K rad/s}$	
	B) $\Omega = 95 \text{ K rad/s}$	
	C) $\Omega = 85 \text{ K rad/s}$	
126	In un condotto di sezione costante avente portata in volume di 1,8 m³/s, scorre un fluido	
	ideale alla velocità di 1,0 m/s. Qual è il valore della sezione del condotto? A) 18 m²	В
	B) 1,8 m ²	_ B
	C) 18 m ³	
127	Un fluido scorre alla velocità di 50.0 cm/s in un condotto di sezione 0,5 cm². Quale velocità	
	acquista se la sezione del condotto varia diventando di 1,5 cm²?	
	A) 16,7 cm/s	Α
	B) 25 cm/s	
	C) 30 cm	
128	Trascurando la resistenza dell'aria, qual è l'altezza h di un getto d'acqua verticale con	
	velocità iniziale v=20 m/s?	
	A) h=204 m	В
	B) h=20,4 m	
430	C) h=2 m	
129	Trascurando la resistenza dell'aria, qual è la portata di un getto d'acqua verticale in cui la	
	velocità iniziale è v=20 m/s e la sezione iniziale ha un'area A=0,20 m ² ? A) $40 \text{ m}^3 \cdot \text{s}^{-1}$	С
	B) 16 m ³ ·s ⁻¹	
	C) 4 m ³ ·s ⁻¹	
130	Calcolare l'area di un getto d'acqua verticale all'altezza di 10m con una velocità iniziale pari	
	a 20m*s ⁻¹ , sapendo che la sezione iniziale possiede un area uguale a 0,20 m ² e la portata del	
	getto 4 m ³ ·s ⁻¹ (trascurare la resistenza dell'aria).	
	A) $A_1=0.28 \text{ m}^2$	Α
	B) $A_1=28 \text{ m}^2$	
	C) A 20 × 2	ĺ
	C) $A_1 = 30 \text{ m}^2$	

131	Un aereo da turismo vola alla velocità di 200 Km·h ⁻¹ . Qual è la differenza di pressione	
	segnalata dal tubo di Pitot installato a bordo come tachimetro (γ_{aria} =11,8 N·m ⁻³)?	
	A) $\Delta p = 200 Pa$	С
	B) $\Delta p = 11.8 Pa$	
	C) $\Delta p = 1857 Pa$	
132	Le macchine a fluido in cui il carico totale a monte è maggiore del carico totale a valle:	
	A) sono dette motrici	Α
	B) sono dette operatrici	, ,
	C) non esistono	
133	Le macchine a fluido in cui il carico totale a valle è maggiore del carico totale a monte:	
	A) sono dette motrici	В
	B) sono dette operatrici	Б
	C) non esistono	
134	Lungo una tubazione di diametro 0,05 m defluisce una portata di 1 l/s di olio (viscosità	
	dinamica 2·10 ⁻⁴ m ² ·s ⁻¹). Il moto è:	
	A) laminare	Α
	B) turbolento	
	C) l'olio è molto viscoso per cui non il fluido è fermo all'interno della tubazione	
135	Il numero di Reynolds critico è il valore del numero di Reynolds che:	
	A) caratterizza il valore al di sotto del quale è stabile il regime turbolento del moto del	
	fluido	D
	B) caratterizza il passaggio fra i due regimi di moto di un fluido, laminare o turbolento	В
	C) caratterizza il valore al di sopra del quale è stabile il regime laminare del moto del	
	fluido	
136	Per la legge di Stevino, nei fluidi in quiete sottoposti alla sola forza di gravità:	
	A) i piani isobarici sono verticali	•
	B) nessuna delle altre risposte è corretta	С
	C) i piani isobarici sono orizzontali	
137	Viene definito piano dei carichi idrostatici relativo quel particolare piano isobarico in cui:	
	A) la pressione relativa è pari a 1	
	B) la pressione relativa è nulla p _{rel} =0	В
	C) la pressione assoluta è pari a 1	
138	Viene definito piano dei carichi idrostatici assoluto quel particolare piano isobarico per cui:	
	A) p _{ass} =0	
	B) p _{ass} =10	Α
	C) $p_{rel}=0$	
139	Quanto misura la pressione in un punto affondato sotto la superficie di un fluido di 8 m,	
	sapendo che il peso specifico del fluido è pari 11832 N/m³?	
	A) p=94656 N/m ²	Α
	B) p=10257 N/m ²	
	C) p=94656 N	
140	Calcolare la pressione nel punto più alto di un recipiente chiuso di altezza 5m contenente	
	nella metà superiore benzina (γ _b = 7650 N/m³)e acqua nella metà inferiore (γ _a = 9606 N/m³)	
	sapendo che la pressione relativa è uguale a 7·10⁵ Pa.	_
	A) p=78,5·10 ⁵	С
	B) p=98,06·10 ⁵	
	C) p=6,57·10 ⁵	
141	Nel dimensionamento di condotte cilindriche a sezione circolare, cosa si intende per raggio	
	idraulico?	
	A) Il rapporto fra l'area della sezione ed il contorno bagnato	Α
	B) Il prodotto fra l'area della sezione ed il contorno bagnato	
	C) Caratterizza il passaggio fra i due regimi di moto di un fluido, laminare o turbolento	
	, 1 00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

142	Un oleodotto lungo 20 km è costituito da una condotta orizzontale di diametro 0,15 m. Qual è la velocità media nella condotta se si ha una portata di 80 m³/h di olio avente peso	
	specifico γ=9120 N/m³ e viscosità dinamica μ=0,22 Pa·s?	
	A) 1,26 m/s	Α
	B) 12 m ² /s	
	C) 256 m/s	
143	Un tubo liscio di diametro 0,8 m convoglia una portata d'acqua di 0,5 m³/s. Qual è la	
1-10	velocità media dell'acqua all'interno della condotta?	
	A) 99 m/s	В
	B) 0,99 m/s	
	C) 199 m ² /s	
144	Attraverso un tubo avente diametro 0,1 m passa una portata d'acqua a 20°C pari a 9,42 l/s	
	(peso specifico γ =9120 N/m ³). Qual è la velocità media nella condotta?	
	A) 91,20 m/s	В
	B) 1,2 m/s	Ь
	C) 120 m ² /s	
145	Attraverso un tubo avente diametro 0,1 m passa una portata d'acqua a 20°C pari a 9,42 l/s	
143	(peso specifico γ=9120 N/m³), con velocità media pari a 1,2 m/s e viscosità cinematica	
	dell'acqua pari a circa 10-6 m²/s. Quanto vale il numero di Reynolds?	
		Α
	A) Re=120000	
	B) Re=1,2	
446	C) Re=1200	
146	Si definiscono lunghe condotte:	
	A) i sistemi di tubazioni in cui si può trascurare l'insieme delle perdite di carico	
	localizzate rispetto a quelle distribuite	Α
	B) i sistemi di tubazioni in cui si può trascurare l'insieme delle perdite distribuite rispetto	
	a quelle di carico localizzate	
	C) nessuna delle altre risposte è corretta	
147	Nei sistemi di lunghe condotte:	
	A) la linea dei carichi totale ha un angolo di inclinazione di 95° rispetto alla linea	
	piezometrica	В
	B) si possono considerare praticamente coincidenti la linea dei carichi totali e la linea	
	piezometrica	
	C) nessuna delle altre risposte è corretta	
148	Nei sistemi di lunghe condotte:	
	A) si può trascurare l'insieme delle perdite distribuite rispetto a quelle di carico	
	localizzate	С
	B) la linea dei carichi totale ha un angolo di inclinazione di 95° rispetto alla linea	
	piezometrica	
	C) la lunghezza della condotta si può assumere pari alla sua proiezione orizzontale	
149	In merito alle perdite localizzate nelle condotte corte, si definisce perdita di imbocco:	
	A) la perdita che si verifica in corrispondenza della sezione d'imbocco	_
	B) la perdita che si verifica in corrispondenza di un brusco allargamento di sezione, tipo	Α
	lo sbocco di una vasca	
	C) la perdita per gomiti o curve	
150	In merito alle perdite localizzate nelle condotte corte, si definisce perdita di Borda:	
	A) la perdita per gomiti o curve	
	B) la perdita che si verifica in corrispondenza di un brusco allargamento di sezione, tipo	В
	lo sbocco di una vasca	
	C) la perdita che si verifica in corrispondenza della sezione d'imbocco	

151	Si parla di condotte a gravità:	
	A) quando l'energia disponibile è di tipo naturale	Α
	B) quando l'energia è fornita da un impianto di sollevamento	, ,
	C) nessuna delle altre è corretta	
152	Si parla di condotte con sollevamento:	
	A) quando l'energia disponibile è di tipo naturale	В
	B) quando l'energia è fornita da un impianto di sollevamento	
	C) nessuna delle altre è corretta	
153	Per bilanciare la spinta di un getto orizzontale su una lastra piana verticale in quiete,	
	bisogna applicare alla lastra una forza orizzontale F. Raddoppiando la velocità del getto, di	
	quanto aumenta la forza da applicare?	С
	A) La forza da applicare per l'equilibrio si dimezza	C
	B) La forza da applicare per l'equilibrio si raddoppia	
	C) La forza da applicare per l'equilibrio si quadruplica	
154	Una portata d'acqua di 90 l/s viene sollevata da un bacino a un cisterna mediante una	С
	pompa che assorbe una potenza elettrica pari a 40 KW, mentre l'energia che la pompa deve	
	dare al fluido che attraversa nell'unità di tempo è uguale a 20 KW. Determinare il	
	rendimento del gruppo pompa - motore.	
	A) $\eta_{PM} = 35 \%$	
	B) $\eta_{PM} = 33 \%$	
	C) $\eta_{PM} = 50 \%$	
155	Un getto d'acqua orizzontale colpisce la parete piana verticale di un carrello con attrito	
	nullo, che, a causa della spinta esercitata dal getto, inizia a muoversi. L'accelerazione del	
	carrello è costante o varia?	В
	A) L'accelerazione del carrello è costante	
	B) L'accelerazione del carrello via via diminuisce	
	C) L'accelerazione del carrello aumenta	
156	Un getto d'acqua orizzontale colpisce la parete piana verticale di un carrello con attrito	
	nullo, che, a causa della spinta esercitata dal getto, inizia a muoversi. Qual è la velocità	
	massima che il carrello può raggiungere?	С
	A) La velocità massima è pari al doppio della velocità del getto	
	B) La velocità massima è pari alla metà della velocità del getto	
4	C) La velocità massima è pari alla velocità del getto	
157	Determinare la portata di un getto d'acqua orizzontale che possiede una velocità media di	
	9m/s, sapendo che esso colpisce una lastra piana verticale e sulla quale per bilanciare la	
	spinta del getto bisogna esercitare una forza orizzontale pari a 150kgf (densità dell'acqua	_
	$\rho = 1000 \text{ Kg/m}^3$).	В
	A) $0.163 \text{ m}^2/\text{s}$	
	B) 0,163 m ³ /s	
150	C) 163 m³/s	
158	Una parete piana verticale di un carrello viene colpita da un getto d'acqua orizzontale con	
	diametro di 50mm e velocità pari a 18 m/s, calcolare l'accelerazione che il carrello possiede	
	appena viene colpito dal getto sapendo che la massa dello stesso è pari a 1000 Kg, ed a	
	causa del getto esso inizia a muoversi, sapendo che la componente orizzontale della spinta	С
	che il getto esercita sulla lastra è S_0 = 636 N. A) 636 m/s ²	
	B) 0,636 m/s ³	
	C) 0,636 m/s ²	
	C) 0,000 III/S	

159	Determinare la velocità media di uscita di un gomito a sezione variabile che devia a 55° verso l'alto una corrente orizzontale, le sezioni di ingresso e di uscita hanno un diametro	
	rispettivamente di 160mm e 80mm e la differenza di quota dei baricentri delle sezioni è pari	
	a 40cm, e defluisce nell'atmosfera una portata di 40 l/s d'acqua.	В
	A) 12 m/s	
	B) 8 m/s	
	C) 11 m	
160	Determinare la velocità media di ingresso di un gomito a sezione variabile che devia a 55°	
	verso l'alto una corrente orizzontale, le sezioni di ingresso e di uscita hanno un diametro	
	rispettivamente di 160mm e 60mm e la differenza di quota dei baricentri delle sezioni è pari	
	a 40cm, e defluisce nell'atmosfera una portata di 40 l/s d'acqua.	Α
	A) 2 m/s	
	B) 5 m/s	
	C) 3 m/s^2	
161	Una parete piana verticale di un carrello viene colpita da un getto d'acqua orizzontale con	
	una velocità di 15m/s, il carrello si muove con una velocità pari a 5m/s nella stessa	
	direzione del getto e la portata del getto è pari a 25 l/s, calcolare la forza frenante che	
	bisogna applicare al carrello affinché esso non acceleri (densità dell'acqua ρ = 1000 kg/m ³).	Α
	A) 167 N	
	B) 167 m	
	C) 16,7N	
162	Un impianto idroelettrico viene alimentato da un grande serbatoio, sapendo che la potenza	Α
	della turbina è pari a 980 KW e la potenza che il fluido cede alla turbina è pari a 2600 KW	
	determinare il rendimento della turbina.	
	A) $\eta_T = 37 \%$	
	B) $\eta_T = 31 \%$ C) $\eta_T = 49 \%$	
163	In una condotta orizzontale con diametro di 2m/s scorre un fluido con una velocità media	
103	pari a 2m/s, determinare la velocità ottenuta se la sezione della condotta varia, assumendo	
	un diametro pari a 150mm.	
	A) 100 m/s	В
	B) 8 m/s	
	C) 80 m/s	
164	Spiegare cosa accade nella sezione a monte di una turbina eolica e la sezione a valle	
	sapendo che il diametro della turbina è pari a 90m e che essa è soggetta all'azione del vento	
	con velocità costante pari a 25 Km/h.	_
	A) L'aria subisce variazioni di quota	С
	B) L'aria subisce variazioni di pressione	
	C) L'aria cede alla turbina energia cinetica	
165	Determinare la spinta di un getto d'acqua orizzontale che colpisce una lastra piana che con	
	una velocità di 10 m/s che si muove nella medesima direzione del getto, sapendo che il	
	diametro del getto è di 50mm e la velocità media è pari a 30m/s.	В
	A) 78500 N	
	B) 785 N	
166	C) 78 N	
166	Calcolare la forza orizzontale che si scarica su due vigili del fuoco che stanno domando un	
	incendio reggendo un idrante il cui ugello terminale ha il diametro della sezione di sbocco pari a 20mm, essendo la portata uguale a 750 l/min.	
	A) pari a -497 N e ha verso opposto alla velocità di sbocco	Α
	B) pari a -497 N e ha verso opposto alla velocità di sbocco	
	C) pari a -4 N e ha verso identico alla velocità di sbocco	
	o, parta i i i cita della dell	<u> </u>

173	C) Fr = 952 N In una condotta di un impianto di condizionamento entra una corrente con una portata	Α
	B) Fr = 683 N	
	A) Fr = 738 N	
	fluido.	Α
	e la sua retta d'azione forma un angolo di 35° (cos35° = 0,82) con la direzione del moto del	
172	Determinare la resistenza di un corpo immerso avente la risultante degli sforzi pari a 900N	
	C) 0,125	
	B) 250	
	A) 260	С
	l/s. A quanto corrisponde la cadente alla perdita di carico H = 25 m?	
171	In una tubo di plastica lungo L = 200 m, deve essere canalizzata aria con una portata di 300	
	C) $Qc = 63 \text{ m}^3/\text{s}$	
	B) $Qc = 54 \text{ m}^3/\text{s}$	
	A) $Qc = 41 \text{ m}^3/\text{s}$	В
-	di acqua con una velocità media di Vc = 3 m/s ed Ac = 8,0 m²/s. Calcolare la portata critica.	
170	In un canale a sezione rettangolare, largo 4 m, defluisce in condizioni critiche una corrente	
	C) 350 N	
	B) 177 N	
	A) 1,77 N	Α
	(Densità dell'acqua $\rho = 1000 \text{ kg/m}^3$).	
103	investita da un getto d'acqua orizzontale con diametro pari a 50mm e velocità pari a 30m/s	
169	Determinare la forza che bisogna applicare ad una lastra per rimanere in equilibrio essendo	
	C) $38 \mathrm{m}^3/\mathrm{s}$	
	B) 3830 m/s	
	A) 3830 m/s	
	trascurabile e che le pale forzino l'aria attraverso un cilindro immaginario dello stesso diametro delle pale).	В
	basso. (Si ipotizzi che l'aria, di densità 1,18 kg/m³, si avvicini alle pale dall'alto con velocità	<u> </u>
	l'elicottero resta fermo in aria, muovono una massa d'aria con diametro pari a 15m verso il	
	pale hanno una massa pari a 10000 Kg esse ruotano ad una velocità di 400gpm quando	
168	Determinare la portata della corrente d'aria generata da un elicottero vuoto sapendo che le	
	C) 300 N	
	B) 295 N	
	A) 2,95 N	
	pale del ventilatore).	
	atmosferica, attraverso un cilindro immaginario il cui diametro sia uguale al diametro delle	Α
	trascurabile e che fuoriesca con velocità uniformemente distribuita e a pressione	
	che l'aria si avvicini al ventilatore attraverso una sezione molto grande con velocità	
	diametro che sposta 50 m³/min di aria, (densità aria pari a 1,20 kg/m³, si consideri l'ipotesi	

"In un liquido di densità costante la pressione assoluta raddoppia se si raddoppia la profondità." Tale affermazione: A) è falsa perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia la pressione relativa B) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia sia la pressione assoluta che quella relativa C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta che quella relativa C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta de quella relativa C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta de quella relativa (rispetto alla superficie libera) raddoppia anche la pressione della stessa quantità in tutto il volume (rispetto di pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa velocità. Che rapporto c'è tra le portata di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa e pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa e pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di volume dei due ventilatori dentici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume sono in guali in alla montagna con in moto alla stessa velocità, la portata di volume sul livello del mare sarà mig			
A) è falsa perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia la pressione relativa B) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia sia la pressione assoluta che quella relativa C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta Il principio di Pascal afferma che: A) un incremento di pressione applicato ad un volume finito di fluido fa diminuire la pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori isono in moto alla stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna 178 Se la pressione ela in alta montagna 28 La pressione ela pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	174		
la pressione relativa B) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia sia la pressione assoluta che quella relativa C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta 175 Il principio di Pascal afferma che: A) un incremento di pressione applicato ad un volume finito di fluido fa diminuire la pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa sarà maggiore che in alta montagna B) Le portate di massa sono diverse, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna E la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione B) in depressione C) a pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore che in alta montagna		·	
B) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia sia la pressione assoluta che quella relativa C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta 175 Il principio di Pascal afferma che: A) un incremento di pressione applicato ad un volume finito di fluido fa diminuire la pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Une ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna Tor Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a press			
sia la pressione assoluta che quella relativa C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta ITPS II principio di Pascal afferma che: A) un incremento di pressione applicato ad un volume finito di fluido fa diminuire la pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume To pressione della stessa quantità in tutto il volume Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di montagna sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna La differenza tra la pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione n		·	Α
C) è vera perché se si raddoppia la profondità (rispetto alla superficie libera) raddoppia anche la pressione assoluta 175 Il principio di Pascal afferma che: A) un incremento di pressione applicato ad un volume finito di fluido fa diminuire la pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa è pari a quella in alta montagna B) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione null			
anche la pressione assoluta 175 Il principio di Pascal afferma che: A) un incremento di pressione applicato ad un volume finito di fluido fa diminuire la pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono diverse, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) a pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione C) a pressione nulla La differenza tra la pressione assoluta p e il valore locale della pressione atmosf		·	
175			
pressione della stessa quantità in tutto il volume B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono diverse, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione C) a pressione nulla La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione nulla C) vuoto assoluto C) vuoto assoluto	175	·	
B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		A) un incremento di pressione applicato ad un volume finito di fluido fa diminuire la	
pressione della stessa quantità in tutto il volume C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna C) a pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione C) a pressione nulla La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		pressione della stessa quantità in tutto il volume	
C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		B) un incremento di pressione applicato ad un volume finito di fluido fa aumentare la	В
pressione della stessa quantità in tutto il volume 176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto		pressione della stessa quantità in tutto il volume	
176 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione relativa C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		C) una diminuzione di pressione applicata ad un volume finito di fluido fa aumentare la	
sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		pressione della stessa quantità in tutto il volume	
ventilatori? A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione relativa C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	176	Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna,	
A) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione relativa C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		sono in moto alla stessa velocità. Che rapporto c'è tra le portate di massa dei due	
maggiore che in alta montagna B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		ventilatori?	
B) Le portate di massa sono uguali, infatti al livello del mare la portata di massa è pari a quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
quella in alta montagna C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		•	Α
C) Le portate di massa sono diverse, infatti al livello del mare la portata di massa sarà minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
minore che in alta montagna 177 Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		·	
Due ventilatori identici, posti uno al livello del mare e l'altro in cima a un'alta montagna, sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
sono in moto alla stessa velocità. Che rapporto c'è tra le portate di volume dei due ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
ventilatori? A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	177	· ·	
A) Se i due ventilatori sono in moto alla stessa velocità allora le portate di volume sono uguali B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
B) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa A) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
sarà maggiore che in alta montagna C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			А
C) Pur avendo i due ventilatori la stessa velocità, la portata di volume sul livello del mare sarà minore che in alta montagna 178 Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
sarà minore che in alta montagna Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
Se la pressione relativa in un punto è minore di zero (cioè se la pressione assoluta in quel punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		• • •	
punto è minore della pressione atmosferica) si dice che il fluido in quel punto è: A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	170		
A) in pressione B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica patm viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	1/0		
B) in depressione C) a pressione nulla 179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			R
C) a pressione nulla La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		. ,	5
179 La differenza tra la pressione assoluta p e il valore locale della pressione atmosferica p _{atm} viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		·	
viene chiamata: A) pressione relativa B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	179	· •	
B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad			
B) pressione nulla C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		A) pressione relativa	Α
C) vuoto assoluto 180 Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad		, ,	
· · · · · · · · · · · · · · · · · · ·			
	180	Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	
essa segna 32 kPa in un luogo dove la pressione atmosferica è pari a 96 kPa.		essa segna 32 kPa in un luogo dove la pressione atmosferica è pari a 96 kPa.	
A) 6,4 kPa		A) 6,4 kPa	В
B) 64 kPa		B) 64 kPa	
C) 92 kPa		C) 92 kPa	

181	Determinare la pressione relativa ad una profondità di 16m, conoscendo la pressione	
	relativa alla profondità di 4m pari a 36 kPa.	
	A) 112 Pa	В
	B) 112 kPa	
400	C) 112 kg	
182	Determinare la pressione atmosferica locale sapendo che la pressione assoluta misura in	
	acqua alla profondità di 7m 155 kPa (densità acqua pari a 1000 kg/m³).	•
	A) 10 kPa	С
	B) 12 kg	
400	C) 86 kPa	
183	Determinare la pressione assoluta in un luogo dove alla profondità di 5m in un liquido che	
	possiede una densità relativa di 850 kg/m³, con pressione atmosferica locale pari a 96 kPa.	D
	A) 13 kPa	В
	B) 138 kPa	
104	C) 130 kg	
184	Restando in piedi con entrambe i piedi poggiati a terra un uomo che pesa 90kgf ed ha	
	un'area della pianta del piede pari a 450cm², calcolare di quanto sarà la pressione che l'uomo esercita sul suolo?	
	A) 9,81 kPa	Α
	B) 981 kPa	
	C) 9,81 kg	
185	Restando in piedi su un solo piede poggiati a terra un uomo che pesa 90kgf ed ha un'area	
100	della pianta del piede pari a 450cm ² , calcolare di quanto sarà la pressione che l'uomo	
	esercita sul suolo?	
	A) 196 kPa	В
	B) 19,6 kPa	
	C) 1,5 kg	
186	In una località la lettura barometrica indica 850mmHg, conoscendo la densità del mercurio	
100	pari a 13600 kg/m³ calcolare il valore della pressione atmosferica.	
	A) 113, 4 kPa	Α
	B) 18 kPa	
	C) 19 kg	
187	Quale dovrà essere la dimensione minima di ogni racchetta da neve, che una donna deve	
	usare per poter camminare senza affondare sulla neve, sapendo che la donna pesa 70kgf e	
	possiede un'area del piede di 400cm² e che la neve non può sopportare pressioni maggiori	
	di 0,5 kPa?	С
	A) 13,7 m	
	B) 137 m ²	
	C) 1,37 m ²	
188	Supponendo che la densità del mercurio è pari a 10200 kg/m³, che in un luogo la lettura	
	barometrica indica 820 mmHg e che un vacuometro attaccato ad una cisterna indica un	
	valore pari a 45 kPa e che la pressione atmosferica è pari a 82,05 kPa, calcolare la pressione	
	assoluta.	Α
	A) 37,05 kPa	
	B) 380 kPa	
	C) 5 Pa	
189	Supponendo che la densità del mercurio è pari a 10200 kg/m³, che in un luogo la lettura	
	barometrica indica 820 mmHg e che un vacuometro attaccato ad una cisterna indica un	
	valore pari a 45 kPa, calcolare la pressione atmosferica.	С
	A) 825,02 kPa	-
	B) 784,5 kg	
	C) 82,05 kPa	

	The state of the s	
190	Calcolare la differenza di quota sapendo che il barometro all'inizio di una escursione segna 560mbar e alla fine segna 420mbar, conoscendo la densità media dell'aria pari a 1,00 kg/m ³ .	
	A) 1427 m	Α
	B) 14,7 cm	
	C) 14,78 kPa	
191	La pressione atmosferica misurata sul tetto e al piede di un edificio vale, rispettivamente,	
	97292 Pa e 100624 Pa. Quanto misura l'altezza dell'edificio, considerando che la densità	
	media dell'aria di 1,18 kg/m³ ?	
	A) 2,8 m	В
	B) 287,9 m	
	C) 270,9 km	
192	Qual è la pressione che opera su un subacqueo a 30m di profondità sapendo che la densità	
	relativa dell'acqua di mare è uguale a 1,03, densità dell'acqua uguale a 1000 kg/m³.	
	A) 404 kPa	Α
	B) 40 kg	
	C) 4 kPa	
193	Se un sottomarino si muove ad una profondità di 100m, avente una pressione barometrica	
	di 101000 Pa ed una densità dell'acqua di mare pari a 1030 Kg/m³, quale sarà la pressione	
	alla quale il sottomarino viene sottoposto?	n
	A) 11 Pa	В
	B) 1111 kPa	
	C) 110 kg	
194	Determinare la differenza di pressione che opera sul capo e sui piedi di un uomo di altezza	
	2,6m immerso verticalmente in una piscina.	
	A) 25,5 kPa	Α
	B) 3 kPa	
	C) 31 Pa	
195	Il cilindro di un ponte idraulico in un'officina per automobili ha un diametro di 30 cm e può	
	sollevare automobili fino a 2000 kg. Quanto misura la pressione relativa del fluido	
	all'interno del serbatoio, considerando il peso proprio del pistone trascurabile?	В
	A) 28 Pa	ь
	B) 278 kPa	
	C) 27 kPa	
196	La pressione atmosferica standard è pari a 101325 Pa. L'altezza piezometrica è la pressione	
	espressa in termini di colonna di liquido. Quanto vale la pressione atmosferica standard in	
	termini di colonna di mercurio ($\rho_r = 13,6$)?	С
	A) 0,7 cm	C
	B) 759 m	
	C) 0,759 m	
197	La pressione atmosferica standard è pari a 101325 Pa. L'altezza piezometrica è la pressione	
	espressa in termini di colonna di liquido. Quanto vale la pressione atmosferica standard in	
	termini di colonna di acqua ($\rho_r = 1,0$)?	Α
	A) 10,3 m	, ,
	B) 1 m	
	C) 122 m	
198	Sapendo che l'altezza piezometrica è la pressione espressa in termini di colonna di liquido e	
	che la pressione atmosferica è pari a 101325 Pa, calcolare la pressione atmosferica standard	
	in termini di colonna di glicerina ($\rho_r = 1,26$).	С
	A) 820 m	-
	B) 8 cm	
	C) 8,20 m	

I 100 l lla miette enimontale commistenzante imprensa in comun à compact transite une funicelle l	
199 Un piatto orizzontale completamente immerso in acqua è sospeso tramite una funicella attaccata al baricentro della faccia superiore. Come varia la spinta sulla faccia superiore quando il piatto ruota di 45° attorno a un asse baricentrico orizzontale, rimanendo	
comunque completamente immerso?	
A) Il modulo della spinta sulla faccia superiore del piatto non varia, poiché rimangono invariati sia l'area della superficie che l'affondamento del baricentro rispetto alla superficie libera	Α
B) Il modulo della spinta sulla faccia superiore del piatto aumenta del doppio, poiché	
l'area della superficie aumenta, mentre l'affondamento del baricentro rispetto alla superficie libera diminuisce	
C) Il modulo della spinta sulla faccia superiore del piatto diminuisce, poiché sia l'area	
della superficie che l'affondamento del baricentro rispetto alla superficie libera	
diminuiscono	
200 Per quale motivo la sezione trasversale delle dighe e più larga alla base?	
A) Perché nei liquidi la pressione diminuisce linearmente con la profondità	•
B) Perché la spinta che la diga riceve dal liquido è decrescente con la profondità	С
C) Perché la spinta che la diga riceve dal liquido è crescente con la profondità	
201 Come si calcola la componente verticale della spinta idrostatica su una superficie curva?	
A) La componente verticale della spinta idrostatica su una superficie curva ha modulo	
uguale al peso del volume di liquido, reale o virtuale, compreso tra la superficie curva	
e il piano dei carichi idrostatici	
B) La componente verticale della spinta idrostatica su una superficie curva ha modulo	Α
pari al doppio del peso del volume di liquido, reale o virtuale, compreso tra la	
superficie curva e il piano dei carichi idrostatici	
C) La componente verticale della spinta idrostatica su una superficie curva ha modulo	
pari alla metà del peso del volume di liquido, reale o virtuale, compreso tra la superficie curva e il piano dei carichi idrostatici	
202 Come si calcola la componente orizzontale della spinta idrostatica su una superficie curva?	
A) La componente orizzontale secondo una qualsiasi direzione della spinta idrostatica su	
una superficie curva è uguale (in modulo e retta d'azione) al triplo della spinta	
idrostatica agente sulla superficie piana verticale che si ottiene proiettando la	
superficie curva su un piano verticale normale a quella direzione	
B) La componente orizzontale secondo una qualsiasi direzione della spinta idrostatica su	
una superficie curva è uguale (in modulo e retta d'azione) al doppio della spinta	С
idrostatica agente sulla superficie piana verticale che si ottiene proiettando la	
superficie curva su un piano verticale normale a quella direzione	
C) La componente orizzontale secondo una qualsiasi direzione della spinta idrostatica su	
una superficie curva è uguale (in modulo e retta d'azione) alla spinta idrostatica	
agente sulla superficie piana verticale che si ottiene proiettando la superficie curva su	
un piano verticale normale a quella direzione	
203 Una diga alta 320m è piena d'acqua per un'altezza di 40m, calcolare il modulo della spinta	
sulla diga sapendo che la densità dell'acqua 1000 kg/m³. A) 252 × 10 ⁶ kN	D
B) $2.51 \times 10^6 \text{ kN}$	В
C) $3.05 \times 10^6 \text{N}$	
204 Una vasca piena d'acqua fino all'orlo possiede una lunghezza di 4m una larghezza di 4m ed	
un' altezza di 1,5m, calcolare il modulo della spinta sulle pareti conoscendo la densità	
dell'acqua pari a 1000 kg/m ³ .	_
A) 100 N	С
1 1,1 20011	
B) 44 N	

205	Calcolare il modulo della spinta su un oblò di una cabina quando il suo baricentro è alla profondità di 3 m al di sotto della superficie del mare, sapendo che il diametro dell'oblò è uguale a 20 cm e la densità dell'acqua di mare è pari a 1025 kg/m³. A) 9552 N B) 947 N C) 9472 kN Calcolare il modulo della spinta S su una facciata piana quadrata che ha un lato di 5 cm, incernierata intorno al lato più in alto e poggia su un dentello in corrispondenza del lato più basso e sbarra un condotto pieno d'acqua con un'altezza di 4m. A) 392 kN B) 32 N C) 392000 kN	B A
207	Cosa si intende per spinta di galleggiamento? A) La spinta di galleggiamento è la forza verticale, diretta verso l'alto, che un fluido esercita su un corpo immerso a causa della differenza di pressione che si crea tra la superficie inferiore del corpo e quella superiore B) La spinta di galleggiamento è la forza orizzontale, diretta verso destra, che un fluido esercita su un corpo immerso a causa della differenza di pressione che si crea tra la superficie inferiore del corpo e quella superiore C) La spinta di galleggiamento è la forza orizzontale, diretta verso il basso, che un fluido esercita su un corpo immerso a causa della differenza di pressione che si crea tra la superficie inferiore del corpo e quella superiore	Α
208	Le spinte di galleggiamento su due sfere identiche immerse a profondità diversa sono: A) uguali B) diverse C) una il doppio dell'altra, poiché dipendono dalla profondità a cui le sfere sono immerse	А
209	Le spinte di galleggiamento su un cubo di rame di 3 kg e su una sfera di rame di 3 kg sono: A) diverse B) uguali C) una maggiore dell'altra perchè dipendono dalla forma del corpo	В
210	Calcolare la forza che si deve applicare per alzare dal fondo di un lago un pezzo di granito di 170 Kg, avente densità di 2700Kg/m³. A) 1050 kN B) 1050 N C) 10 N	В
211	Individuare il volume di un oggetto che in aria pesa 7200N e in acqua pesa 4790 N, conoscendo la densità dell'acqua uguale a 1000 kg/m³. A) 2 m³ B) 0,246 m³ C) 246 m³	В
212	Determinare la densità di un corpo che in aria pesa 7200N e in acqua pesa 4790 N, sapendo che il volume del corpo è pari a 0,246 m³ e la densità dell'acqua pari a 1000 kg/m³. A) 2980 kg/m³ B) 29 kg/m³ C) 2 kg/m³	А
213	Nell'oceano galleggia un pezzo di ghiaccio di forma cubica, sapendo che la densità del ghiaccio è pari a 920 Kg/m³ e la densità dell'acqua dell' oceano pari a 1025 Kg/m³, determinare l'altezza della parte immersa del pezzo di ghiaccio sapendo che la parte emersa ha un'altezza di 10 cm sulla superficie dell'acqua. A) 0,876 m B) 876 m C) 0,8 cm	A

214	Sapendo che la densità dell'oceano è uguale a 1025 Kg/m³ e che la porzione emersa di un ghiacciaio è circa il 10% del suo volume, calcolare la sua densità (sapendo che W = Wi). A) 922 kg/m³	В
	B) 9 kg/m ³	В
	C) 9 g/m ³	
215	Un tubo rigido orizzontale viene attraversato da una portata di 5cc/s, quanto vale la	Α
	pressione trasmurale sapendo che Pint è pari a 25Pa e Patm è pari a 14 Pa?	
	A) Pt = 17 Pa	
	B) Pt = 11 Pa	
	C) Pt = 12 Pa	
216	Esprime in bar una pressione di 105 kgf/cm².	
	A) 108 bar	С
	B) 112 bar	
	C) 103 bar	
217	Esprime in kPa la pressione di 75 kgf/cm².	
	A) 7360 kPa	Α
	B) 73,6 Pa	
	C) 7 kPa	
218	Esprime in bar una pressione di 75 kgf/cm ² .	
	A) 7 bar	В
	B) 73,6 bar	
	C) 75923 bar	
219	Determinare il volume di acqua spostato da una tubazione posata sott'acqua (densità acqua	
	uguale a 1000 kg/m³), sapendo che possiede un diametro di 0,5 m ed una lunghezza pari a	
	20m. Nella condotta circola aria avente densità pari a 1,3 Kg/m³.	С
	A) 2,90 m ²	
	B) 5,02 m ³	
	C) 3,95 m ³	
220	, , , , , , , , , , , , , , , , , , , ,	
	(densità acqua uguale a 1000 kg/m³), sapendo che possiede un diametro di 15 cm ed una	
	lunghezza pari a 20m. Nella condotta circola aria avente densità pari a 1,3 Kg/m³, ed il	
	volume di acqua mosso è uguale a 0,353 m³.	Α
	A) 3, 46 kN	
	B) 346 kN	
224	C) 34 N	
221	Esprime in bar una pressione di 85kgf/cm ² .	
	A) 9 bar	В
	B) 83,4 bar	
222	C) 845 bar	
222	Calcolare qual è la differenza di pressione tra la base ed il tetto di un recipiente nella cui metà inferiore è presente acqua e nella metà superiore olio (densità olio 0,85 densità	
	acqua pari a 1000 kg/m ³ e densità olio ρ_0 =850 kg/m ³).	
	A) 907 kPa	В
	B) 90,7 kPa	
	C) 9 Pa	
223	Calcolare la densità media di un pezzo di legno che pesa p = 1540N, sapendo che sapendo la	
	massa del tronco è pari a 157 kg e che per far immergere il tutto in acqua bisogna	
	aggiungere mp = 34 Kg di piombo e che il volume del pezzo di legno è uguale a 0,188 m ³	
1	, was with the contract of the state of the	
		Α
	(densità piombo uguale a 11300Kg/m³).	А
	(densità piombo uguale a 11300Kg/m³). A) 835 kg/m³	А
	(densità piombo uguale a 11300Kg/m³).	А

224	Calcolare massa di un pezzo di legno che pesa p = 1540N, sapendo che per far immergere il tutto in acqua bisogna aggiungere mp = 34 Kg di piombo e che il volume del pezzo di legno è uguale a 0,188 m³(densità piombo uguale a 11300Kg/m³). A) 8 kg	В
	B) 157 kg C) 10 kg/m ³	
225	Calcolare il volume di un pezzo di legno che pesa 1540N, avente massa uguale a ml = 157 Kg, sapendo che la densità dell'acqua è uguale a 1000Kg/m³ e che per far immergere il tutto bisogna aggiungere mp = 34 Kg di piombo (densità piombo uguale a 11300Kg/m³). A) 8 m³	С
	B) 157 kg C) 0,188 m ³	
226	Un pezzo di ghiaccio, in parte immerso, galleggia nell'acqua del mare, che ha densità pari a 1042 kg/m³. Supponendo che la densità media del ghiaccio è di circa 917 kg/m³,quanto vale in percentuale il volume totale del ghiaccio immerso? A) 88% B) 3% C) 20%	А
227	Perchè i liquidi vengono convogliati generalmente in tubazioni circolari? A) Perchè la sezione trasversale di forma circolare è in grado di resistere a notevoli differenze di pressione tra l'interno e l'esterno pur subendo deformazioni significative B) Perchè la sezione trasversale di forma circolare non è in grado di resistere a notevoli differenze di pressione tra l'interno e l'esterno poiché subisce deformazioni significative C) Perchè la sezione trasversale di forma circolare è in grado di resistere a notevoli differenze di pressione tra l'interno e l'esterno senza subire deformazioni significative	С
228	Il numero di Reynolds è un parametro: A) adimensionale, proporzionale al rapporto tra forze di inerzia e forze viscose, dal cui valore dipende il regime di moto B) adimensionale proporzionale al rapporto tra la velocità media della corrente e la il diametro interno di una tubazione circolare C) dimensionalmente assimilabile ad una velocità, inversamente proporzionale al rapporto tra forze viscose e forze di inerzia	А
229	Un oggetto si muove in aria e poi in acqua con la stessa velocità. Quale dei due moti ha il numero di Reynolds più grande? (Si ipotizzi la viscosità cinematica dell'acqua a 25 °C pari a 0,89x10 ⁻⁶ m²/s e la viscosità cinematica dell'aria a 25 °C pari a 15,6x10 ⁻⁶ m²/s). A) aria B) acqua C) il numero di Reynolds è uguale nei due fluidi	В
230	Se il numero di Reynolds è pari a 4000, il moto in una tubazione a sezione circolare è: A) laminare B) turbolento C) instabile	В
231	Se il numero di Reynolds è inferiore a 2300, il moto in una tubazione a sezione circolare è: A) laminare B) instabile C) turbolento	А

232	La lunghezza d'ingresso in una tubazione è maggiore nel moto laminare o nel moto turbolento?	
	A) In regime di moto laminare la lunghezza d'ingresso è notevolmente maggiore (tranne	
	che per Re molto bassi) di quella che si ha in regime di moto turbolento	Α
	B) In regime di moto turbolento la lunghezza d'ingresso è notevolmente maggiore di	, · ·
	quella che si ha in regime di moto laminare	
	C) La lunghezza d'ingresso è uguale nei due regimi di moto	
233	Il diametro idraulico è una lunghezza caratteristica del moto dei fluidi ed è pari:	
233	A) al doppio del raggio idraulico	
	B) al quadruplo del raggio idraulico	В
	C) alla metà del raggio idraulico	
234	Nel moto laminare in una tubazione circolare, lo sforzo tangenziale alla parete τ_0 è maggiore	
	in prossimità dell'imbocco della tubazione o più a valle?	
	A) Lo sforzo tangenziale alla parete è maggiore più a valle dell'imbocco della tubazione	
	B) Lo sforzo tangenziale alla parete è uguale per tutta la tubazione	С
	C) Lo sforzo tangenziale alla parete è maggiore in prossimità dell'imbocco della	
	tubazione	
235	In una condotta posata sott'acqua, avente diametro di 25 cm e lunghezza di 40 m. Essendo	
	la densità dell'acqua pari a 1000 kg/m³, e il volume di acqua spostato pari a 0,4 m³, calcolare	
	il modulo della spinta di galleggiamento sulla condotta.	
	A) 3924 kN	Α
	B) 4200 kN	
	C) 3821 N	
236	In regime laminare, la scabrezza della parete:	
	A) non ha alcuna influenza sulla resistenza al moto, che dipende solo dal numero di	
	Reynolds	Α
	B) influenza la resistenza al moto	
	C) dipende dal numero di Reynolds e dalla resistenza al moto	
237	In regime turbolento, la scabrezza della parete quale effetto ha sulla perdita di carico?	
	A) In regime turbolento la perdita aumenta all'aumentare della scabrezza	٨
	B) In regime turbolento la perdita diminuisce all'aumentare della scabrezza	Α
	C) In regime turbolento la scabrezza non ha alcuna influenza sulla perdita di carico	
238	Nella regione di moto completamente sviluppato, lo sforzo tangenziale alla parete τ_0 varia	
	lungo la direzione del moto?	
	A) Si, aumenta nella direzione del moto	В
	B) No, si mantiene costante nella direzione del moto, indipendentemente dal regime di	Ь
	moto	
	C) Si, aumenta nella direzione del moto, in caso di regime turbolento	
239	Quale proprietà del fluido è responsabile dello sviluppo dello strato limite di velocità?	
	A) Viscosità	Α
	B) Volume	7
	C) Nessuna proprietà del fluido influenza lo strato limite di velocità	
240	Nella regione di moto completamente sviluppato, il profilo di velocità varia lungo la	
	direzione del moto?	
	A) No, si mantiene inalterato nella direzione del moto, indipendentemente dal regime di	Α
	moto	, ,
	B) Si, aumenta esponenzialmente nella direzione del moto	
	C) Si ed è strettamente dipendente dal regime di moto	

241	Nel moto in una tubazione, la cadente piezometrica:	
	A) è proporzionale al rapporto tra il diametro e l'altezza cinetica	
	B) è proporzionale al rapporto tra l'altezza cinetica e il diametro, con coefficiente di	В
	proporzionalità pari all'indice di resistenza λ	
	C) non esiste	
242	Lo sforzo tangenziale, in corrispondenza dell'asse di una tubazione è:	
	A) nullo	
	B) massimo	Α
	C) maggiore del gradiente di velocità, considerato sempre in corrispondenza dell'asse di	
	una tubazione	
243	Lo sforzo tangenziale, in corrispondenza della parete di una tubazione è:	
	A) massimo	Α
	B) nullo	,,
	C) non esiste	
244	Il gradiente di velocità, in corrispondenza della parete di una tubazione è:	
	A) non esiste	С
	B) nullo	Ü
	C) massimo	
245	Il gradiente di velocità, in corrispondenza dell'asse di una tubazione è:	
	A) massimo	
	B) nullo	В
	C) maggiore dello sforzo tangenziale, considerato sempre in corrispondenza dell'asse di	
	una tubazione	
246	La perdita di carico tra le sezioni di estremità di una tubazione è proporzionale:	
	A) alla lunghezza della tubazione	Α
	B) alla viscosità del fluido presente all'interno della tubazione	
	C) alla larghezza della tubazione	
247	Lo sforzo tangenziale in corrispondenza della parete di una tubazione è massimo:	
	A) a velocità elevate	С
	B) in presenza di fluidi viscoelastici	_
	C) in corrispondenza della parete	
248	Lo sforzo tangenziale in corrispondenza della parete di una tubazione è proporzionale al:	
	A) alla viscosità del fluido	В
	B) al gradiente di velocità	
	C) alla lunghezza della tubazione	
249	In una tubazione circolare la portata, in regime di moto laminare, è pari:	
	A) alla metà del prodotto della velocità in corrispondenza dell'asse per l'area della	
	sezione trasversale	
	B) al doppio del prodotto della velocità in corrispondenza dell'asse per l'area della	А
	sezione trasversale	
	C) ad un quarto del prodotto della velocità in corrispondenza dell'asse per l'area della	
	sezione trasversale	
250	La viscosità turbolenta:	
	A) non tiene conto del trasporto di quantità di moto dei vortici turbolenti	-
	B) è causata da vortici turbolenti e tiene conto del trasporto di quantità di moto di tali	В
	vortici	
	C) non esiste	

251	In una tubazione circolare, in regime di moto laminare, se la viscosità del fluido si dimezza riscaldando il fluido e rimane costante la portata, come varia la perdita di carico a parità di	
	tutto il resto?	Α
	A) Si dimezza	/\
	B) Raddoppia	
	C) Triplica	
252	Nel moto di un fluido in una tubazione orizzontale a diametro costante, che relazione c'è tra	
	la perdita di carico e la perdita di pressione tra due sezioni?	
	 A) In una tubazione orizzontale a diametro costante, essendo costante sia la quota che l'altezza cinetica, la perdita di carico tra due sezioni 1 e 2 è pari al rapporto tra la perdita di pressione fra le due sezioni e il peso specifico del fluido B) In una tubazione orizzontale a diametro costante, essendo costante sia la quota che 	A
	l'altezza cinetica, la perdita di carico tra due sezioni 1 e 2 è pari al rapporto tra peso specifico del fluido e la perdita di pressione fra le due sezioni C) In una tubazione orizzontale a diametro costante, essendo costante sia la quota che l'altezza cinetica, la perdita di carico tra due sezioni 1 e 2 è pari al prodotto tra la	
	perdita di pressione fra le due sezioni e il peso specifico del fluido	
253	In una tubazione circolare con pareti lisce in cui defluisce aria in regime di moto laminare,	
	l'indice di resistenza:	
	A) è uguale a zero	В
	B) è diverso da zero	
	C) non esiste	
254	Per valori molto alti del numero di Reynolds, l'indice di resistenza:	
	A) è indipendente da Re	
	B) aumenta molto più velocemente che nel moto laminare	Α
	C) aumenta del doppio del valore del numero di Reynolds	
255	Un fuido, alla temperatura di 23°C (ρ = 22 kg/m³), defluisce, con la velocità di 3 m/s, su una	
	lastra piana lunga 6m, e Ca = 2. Calcolare l'azione di trascinamento, per unità di larghezza,	
	esercitata dall'olio sulla lastra.	
	A) Fr = 1188N	Α
	B) Fr = 1252N	
	C) Fr = 1344N	
256	In una condotta del diametro di 7 mm, lunga 25 m, scorre acqua alla temperatura di 25 °C,	
	sapendo che il numero di Re è pari a 836 il regime di moto sarà:	
	A) laminare	Α
	B) turbolento	, ,
	C) puramente turbolento	
257	In una tubazione in acciaio, lunga 40 m, defluisce acqua a 60° C ($\rho = 999,1 \text{ kg/m}^3 \text{ e } \mu = 1,138$	
	× 10^{-3} Pa·s), con una portata di 6 l/s ed un diametro D = 0,050m. Il numero di Reynolds vale:	
	A) Re = 134000	Α
	B) Re = 2300	/3
	C) Re = 5260	
258	In una condotta di acciaio, del diametro di 0,050m, lunga 30 m, defluisce acqua a 35°C, con	
	numero di Reynolds pari a 134000 ed una portata di 6 l/s, il regime di moto è:	
	A) lievemente laminare	С
	B) laminare	C
	C) turbolento	
	c) turbolento	

259	In una condotta in acciaio del diametro di 50 mm, lunga 30 m, scorre acqua a 35°C (ρ = 999,1 kg/m³ e μ = 1,138 × 10 ⁻³ Pa·s), con una portata di 6 l/s. Supponendo il moto puramente	
	turbolento e sapendo che l'indice di resistenza e pari a 0,0191, quanto misura la cadente J?	С
	A) J = 182	C
	B) J = 257410	
	C) J = 0,182	
260	In una tubazione di acciaio lunga L=30 m, scorre acqua a 45°C. Ipotizzando il moto	
	puramente turbolento, considerando la cadente J pari a 0,182, determinare la perdita di	
	carico ΔH tra le sezioni di estremità.	Α
	A) ΔH = 5,46 m	A
	B) $\Delta H = 546 \text{ m}^3$	
	C) ΔH = 25410	
261	In una condotta di acciaio lunga 20 m, scorre acqua alla temperatura di 30°C (ρ = 999,1	
	kg/m³), con una portata Q pari a 6 l/s. Ipotizzando il moto puramente turbolento,	
	osservando che la perdita di carico ΔH tra le sezioni di estremità pari a 5,46 m, determinare	
	la potenza necessaria per battere tale perdita?	В
	A) Pf = 21000 kW	
	B) Pf = 321 W	
	C) Pf = 3 W	
262	In una tubo di plastica lungo L = 100 m, deve essere canalizzata aria con una portata di 300	
	l/s. Calcolare la cadente alla perdita di carico H = 15 m?	
	A) 250	С
	B) 78251	
	C) 0,150	
263	Determinare la velocità in corrispondenza dell'asse di una conduttura circolare sapendo che	
	a R/2 dalla parete la velocità vale 1,5 m/s, in regime di moto laminare.	
	A) $V = 30 \text{ m/s}^2$	В
	B) V = 2 m/s	
	C) V = 500 m/s	
264	Determinare la velocità massima in una conduttura avente diametro pari a 40mm in regime	
	di moto laminare, sapendo che il profilo di velocità è dato dalla relazione $v_x(r)=2(1-r^2/R^2)$	
	m/s.	۸
	A) Vmax = 2 m/s	Α
	B) Vmax = 50 m/s	
	C) Vmax = 578 m	
265	Determinare la velocità media in una conduttura avente diametro pari a 40mm in regime di	
	moto laminare, sapendo che il profilo di velocità è dato dalla relazione $v_x(r)=2(1-r^2/R^2)$ m/s	
	e che Vmax = 7m/s.	•
	A) 5 m/s	С
	B) 2,10 m/s	
	C) 3,5 m/s	
266	Determinare la portata in una conduttura avente diametro pari a 40mm in regime di moto	
	laminare, sapendo che il profilo di velocità è dato dalla relazione $v_x(r)=2(1-r^2/R^2)$ m/s e che	
	V = 1 m/s ed A = 8.	_
	A) 7 m ² /s	В
	B) 8 m ³ /s	
	C) 0,8 m ³ /s	
L	-1 -5,5 ··· 15	

Г		
267	Determinare la portata in una conduttura avente diametro pari a 100mm in regime di moto	
	laminare, sapendo che il profilo di velocità è dato dalla relazione $v_x(r)=2(1-r^2/R^2)$ m/s e che	
	V = 1 m/s ed A = 4.	Α
	A) $4 \mathrm{m}^3/\mathrm{s}$, ,
	B) 5 m ³ /s	
	C) $7 \text{ m}^2/\text{s}$	
268	Determinare la velocità media in una conduttura avente diametro pari a 100mm in regime	
	di moto laminare, sapendo che il profilo di velocità è dato dalla relazione $v_x(r)=2(1-r^2/R^2)$	
	m/s e che Vmax = 2 m/s.	n
	A) $V = 50 \text{ m/s}$	В
	B) V = 1 m/s	
	C) V = 250 m/s	
269	Determinare la velocità massima in una conduttura avente diametro pari a 100mm in	
	regime di moto laminare, sapendo che il profilo di velocità è dato dalla relazione	
	$v_x(r)=2(1-r^2/R^2)$ m/s.	•
	A) Vmax = 50 m/s	С
	B) Vmax = 578 m	
	C) Vmax = 2 m/s	
270	Il regime di moto, in una conduttura avente diametro pari a 400mm nella quale fluisce olio	
-	avente densità pari a 894 kg/m³ viscosità pari a 2,33 Pa*s e velocità media pari a 0,5 m/s, è:	
	A) laminare	Α
	B) turbolento	
	C) puramente turbolento	
271	Determinare il numero di Reynolds in una conduttura con diametro pari a 400mm nella	
	quale fluisce olio avente densità pari a 894 kg/m³ viscosità pari a 2,33 Pa*s e con V = 0,5	
	m/s.	
	A) Re = 2300	В
	B) Re = 76,7	
	C) Re = 7580	
272	In una tubazione del diametro di 400 mm defluisce olio, di densità ρ = 894 kg/m³ e viscosità	
	μ = 2,33 Pa·s, con una velocità media di 0,5 m/s. Il regime di moto è tale per cui l'indice di	
	resistenza è espresso da:	_
	A) $\lambda = 64/Re$	Α
	B) λ = Re/64	
	C) λ = 1/Re	
273	In una tubazione nella quale defluisce olio,si ha una velocità media V = 2 m/s l'indice di	
	resistenza $\lambda = 8$ e D = 0,200, quanto vale la cadente J?	
	A) J = 9,22	В
	B) J = 8,16	=
	C) J = 7,22	
274	In una tubazione nella quale defluisce olio, essendo il moto laminare e considerando la	
•	cadente J pari a 0,0266, ed $L = 300$ la perdita di carico ΔH tra le sezioni di estremità della	
	tubazione è pari a:	
	A) $\Delta H = 900 \text{ m}^2$	С
	B) ΔH = 0,5 m	
	C) ΔH = 7,98 m	
275	In una conduttura del diametro di 400 mm defluisce in regime di moto laminare olio, con	
2/3	una velocità media di 0,5 m/s , ed A = 2. Quanto misura la portata?	
	A) 5 m ³ /s	В
	B) 1 m ³ /s	ט
	C) 2 m ² /s	
	C) 2111 /3	

283	A monte di una paratoia piana, che lascia aperta sul fondo una luce è uguale a=0,4m, l'altezza della corrente è pari a h=2m. Calcolare il coefficiente di efflusso.	
	B) Vc = 0,55 m/s C) Vc = 0,11 m/s	
	A) Vc = 0,33 m/s	Α
	Calcolare la velocità della corrente nella sezione contratta.	
282	A monte di una paratoia piana, l'altezza della corrente è di 1,8m, hc=12m e q = 4m²/s.	
	C) $Q = 0.210 \text{ m}^3/\text{s}$	
	B) Q = 25 m	
	A) $Q = 208 \text{ m}^3/\text{s}$	С
	velocità media $V = 7 \text{ m/s}$ e A = 0.03 m ² .	
281	Determinare la portata di aria che defluisce in una condotta in acciaio lunga 7m, avente la	
	C) 32 m ²	
	B) 298 m	~
	presente aria, sapendo che J = 0,298 ed L = 7 m. A) 2,08 m	Α
280	Determinare le perdite di carico nella parte estrema di una condotta in acciaio nella quale è	
200	C) 32	
	B) 0,298	
	A) 357	5
	0,0204, la velocità media di 7 m/s ed il diametro idraulico pari a 0,0171m.	В
	interno è presente aria alla pressione di 1 bar, considerando l'indice di resistenza pari a	
279	Definire la cadente in una condotta in acciaio a sezione rettangolare sapendo che al suo	
	C) laminare	
	B) turbolento	
	A) debolmente laminare	В
	che Re = 72300 il regime di moto è:	Р
	0,0171m, defluisce aria alla pressione di 1 bar, con una velocità media V = 7 m/s, sapendo	
278	In una condotta in acciaio, lunga 7 m, a sezione rettangolare, avente diametro idraulico di	
	C) Re = 741	
	B) Re = 2300	
	A) Re = 72300	Α
	quale è presente aria. Essendo il diametro idraulico pari a 0,0171m la velocità media $V = 7 \text{m/s}$, $\rho = 1,145 \text{ kg/m}^3$ e $\mu = 1,895 \times 10^{-5} \text{ Pa·s}$.	
277	Calcolare il numero di Reynolds in una condotta di acciaio, a sezione rettangolare, nella	
277	C) P _f = 88000 kW	
	B) P _f = 72852 W	
	A) P _f = 94176 W	
	pari a 2 m³/s, quanta potenza è essenziale per mantenere il moto?	Α
	kg/m³. Sapendo che la perdita di carico ΔH tra le sezioni di estremità pari a 6 m e la portata	

204	Legicali idraulici rajativi alla lungha sandatta yangana affattusti tussayanda.	
284	I calcoli idraulici relativi alle lunghe condotte vengono effettuati trascurando:	
	A) le perdite continue rispetto a quelle localizzate; le altezze piezometriche rispetto alle	
	altezze cinetiche; la differenza fra la lunghezza effettiva della tubazione e quella della	
	sua proiezione orizzontale	_
	B) le perdite continue rispetto a quelle localizzate; le altezze piezometriche rispetto alle	С
	altezze cinetiche; il numero di Reynolds	
	C) le perdite localizzate rispetto a quelle continue; le altezze cinetiche rispetto alle	
	altezze piezometriche; la differenza fra la lunghezza effettiva della tubazione e quella della sua proiezione orizzontale	
285	In una rete di distribuzione, quando una tubazione si dirama in due (o più) tubazioni in	
205	parallelo che poi si ricongiungono in un nodo a valle, la perdita di carico:	
	A) è la stessa in ciascuna di tali tubazioni	Α
	B) è sempre uguale alla somma delle portate di tutte le singole tubazioni	
	C) è sempre nulla in ciascuna dei tali tubazioni	
286	In una rete di distribuzione, quando una tubazione si dirama in due (o più) tubazioni in	
230	parallelo che poi si ricongiungono in un nodo a valle, la portata totale:	
	A) è pari alla portata di una qualsiasi delle singole tubazione	В
	B) è pari alla somma delle portate nelle singole tubazioni in parallelo	-
	C) è pari a zero	
287	In una rete di distribuzione, quando più tubazioni sono collegate in serie:	
	A) a ciascuna tubazione compete la somma della portate delle tubazione con quelle delle	
	tubazioni adiacenti	В
	B) a ciascuna tubazione compete la stessa portata	
	C) la perdita di carico è pari a zero	
288	In una rete di distribuzione si individua col termine maglia:	
	A) una successione di lati che partendo da un generico nodo individua un percorso che	
	torna a chiudersi sul nodo di partenza	٨
	B) il punto della rete n cui si ha una variazione delle caratteristiche geometriche o	Α
	idrauliche della rete stessa	
	C) la tubazione che congiunge due nodi	
289	In una rete di distribuzione si individua col termine lato:	
	A) la tubazione che congiunge due nodi	
	B) il punto della rete n cui si ha una variazione delle caratteristiche geometriche o	Α
	idrauliche della rete stessa	
	C) un gran numero di tubazioni collegate tra loro	
290	Il nodo di una rete di distribuzione:	
	A) è una successione di lati che partendo da un generico nodo individua un percorso che	
	torna a chiudersi sul nodo di partenza	В
	B) è il punto della rete n cui si ha una variazione delle caratteristiche geometriche o	
	idrauliche della rete stessa	
201	C) non esiste	
291	Nel moto di un fluido, le perdite dovute alla presenza lungo una tubazione di singolarità	
	quali valvole, curve, gomiti, raccordi a T, imbocchi, sbocchi, convergenti e divergenti sono	
	chiamate:	В
	A) perdite di Colebrook B) perdite localizzate	
	C) perdite di resistenza	
292	Nel moto di un fluido, nel caso di tubazioni non circolari, al posto del diametro della	
292	condotta viene introdotto il diametro idraulico, pari a (indicando con Ri il raggio idraulico):	
	A) Di = 4Ri	Α
	B) Di= 2Ri	, ,
	C) Di= 8 Ri	
	C _f Str C tu	

297	B) regione d'ingresso C) strato limite di velocità Il moto di un fluido in una tubazione, per Re < 2300, è: A) turbolento	
	B) laminare C) puramente turbolento	В
298	L'indice di incidenza λ per il moto laminare in una tubazione circolare è pari a:	
298	·	
	A) 64/Re	^
	, .	Α
	, .	Α
	, .	Α
	B) 345/Re	A
	B) 345/Re	
	C) 1/Re	
	B) 345/KE	
	в) 345/ке	
	B) 345/KE	
	в) 345/ке	
	в) 345/ке	
	в) 345/Re	
	в) 345/ке	
	b) 545/KE	
	В) 345/Ке	
	B) 345/Re	, ,
	B) 345/Re	, ,
	в) 345/Re	
	в) 345/Re	
	в) 345/Re	
	В) 345/Ке	
	В) 345/Ке	
	B) 345/Re	A
	B) 345/Re	A
	B) 345/Re	/ `
	b) 345/KE	
	01 345/NC	
	C) 1/Po	
	C) 1/Re	
	C) 1/KE	
	, ,	_
299	Il regime di moto turbolento di un fluido è caratterizzato da:	
299	ii regime ai moto turbolento ai un fiuldo e caratterizzato da:	
	A) traiettorie parallele e movimento molto irregolare	_
	•	В
	P) trajettorio parallolo e regolari	R
	B) traiettorie parallele e regolari	
	•	
	C) fluttuazioni della velocità e movimento molto irregolare	
	C) Huttuazioni della velocita e movimento molto irregolare	
300	Il regime di moto laminare di un fluido è caratterizzato da:	
300	in regime an inoto ianimare an an induo e caratterizzato da:	
I	 A) fluttuazioni della velocità e movimento molto irregolare 	I _
		В
	D) trajettorio parallelo e regolari	D
	IF TO THE PROPERTY OF THE	Ì
	B) traiettorie parallele e regolari	1
	•	1
	•	
	B) traiettorie parallele e regolari C) traiettorie parallele e movimento molto irregolare	
	C) traiettorie parallele e movimento molto irregolare	
201	C) traiettorie parallele e movimento molto irregolare	
301	•	
301	C) traiettorie parallele e movimento molto irregolare In un moto in pressione:	
301	C) traiettorie parallele e movimento molto irregolare In un moto in pressione:	<u> </u>
301	C) traiettorie parallele e movimento molto irregolare In un moto in pressione:	i
301	C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas	i
301	C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas	i
301	C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas	i
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica 	
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica 	
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica 	
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica B) Il fluido riempie completamente la sezione della condotta, sul cui intradosso ha, in 	
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica B) Il fluido riempie completamente la sezione della condotta, sul cui intradosso ha, in 	
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica B) Il fluido riempie completamente la sezione della condotta, sul cui intradosso ha, in 	
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica B) Il fluido riempie completamente la sezione della condotta, sul cui intradosso ha, in genere, pressione maggiore di quella atmosferica 	n B
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica B) Il fluido riempie completamente la sezione della condotta, sul cui intradosso ha, in genere, pressione maggiore di quella atmosferica 	n B
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica B) Il fluido riempie completamente la sezione della condotta, sul cui intradosso ha, in genere, pressione maggiore di quella atmosferica C) Il fluido riempie per un quarto la sezione della condotta, sul cui intradosso ha, in 	n B
301	 C) traiettorie parallele e movimento molto irregolare In un moto in pressione: A) Il fluido riempie per metà la sezione della condotta, sul cui intradosso ha,quas sempre, temperatura inferiore di quella atmosferica B) Il fluido riempie completamente la sezione della condotta, sul cui intradosso ha, in genere, pressione maggiore di quella atmosferica 	В

302	Da cosa dipende la portata che si stabilisce in un canale a superficie libera?	
	A) La portata che si stabilisce in un canale dipende dall'equilibrio dinamico tra la forza di	
	gravità e la resistenza al moto offerta dalle pareti solide	
	B) La portata che si stabilisce in un canale dipende dall'equilibrio meccanico tra a forza	Α
	centrifuga e la resistenza al moto offerta dalle pareti liquide	
	C) La portata che si stabilisce in un canale dipende dall'equilibrio fisico tra la forza e la	
	resistenza al moto offerta dalle pareti del liquido	
303	In una corrente a superficie libera, qual è l'andamento della linea piezometrica?	
	A) La linea piezometrica della corrente coincide con il profilo della superficie libera	
	B) La linea piezometrica della corrente è parallela al profilo della superficie libera	Α
	C) La linea piezometrica della corrente si pone verticalmente rispetto al profilo della	
	superficie libera	
304	In una corrente a superficie libera, in moto permanente, la pendenza della superficie libera	
	coincide con la pendenza del fondo del canale?	
	A) Si	В
	B) No	
	C) Non sempre	
305	Quale delle seguenti condizioni deve essere soddisfatta perché il moto di una corrente a	
	superficie libera si possa definire costante?	
	A) Che la sezione trasversale si mantenga costante	Α
	B) Che la sezione longitudinale si mantenga costante	
	C) Che la sezione verticale vari nel tempo	
306	Se in un serbatoio sono presenti due fluidi non miscibili in quiete, la pressione all'interno	
300	del serbatoio:	
	A) è uguale in ogni punto	В
	B) varia linearmente con la quota (aumenta con la profondità)	Ь
207	C) diminuisce con la profondità Un moto non uniforme è detto:	
307		
	A) rapidamente variato	Α
	B) invariato	
200	C) immutato	
308	Un moto non uniforme è detto rapidamente variato se:	
	A) le variazioni dell'altezza della corrente sono molto piccoli rispetto alla distanza in cui	
	avvengono	
	B) le variazioni dell'altezza della corrente sono grandi rispetto alla distanza in cui	В
	avvengono	
	C) le variazioni dell'altezza della corrente sono piccoli rispetto alla distanza in cui	
	avvengono	
309	Un moto è detto gradualmente variato se:	
	A) le variazioni dell'altezza sono intermittenti	С
	B) le variazioni dell'altezza sono saltuari	Č
	C) le variazioni dell'altezza sono graduali	
310	Quale delle seguenti formule esprime il raggio idraulico di una corrente a superficie libera?	
	A) $R_i = A / C_b$	Α
	B) $R_i = A * C_b$	7
	C) $R_i = A - C_b$	

311	In che rapporto è con il diametro idraulico il raggio idraulico di una corrente a superficie libera?	
	A) Di = $4 \frac{Cb}{A} = 4 \text{ Rb}$	С
	B) Di = $4 - \frac{A}{Cb} = 6 \text{ Ri}$	C
	C) Di = $4 \frac{A}{Cb} = 4 \text{ Ri}$	
312	Quale tra le seguenti espressione esprime il numero di Froude?	
	A) $F = \frac{U}{\sqrt{g A/B}}$	
	B) $Fr = \frac{V}{\frac{\sqrt{gA}}{B}}$	Α
	C) $Fr = \frac{V}{\sqrt{gB/A}}$	
313	Note l'altezza e la velocità media della corrente, come si stabilisce se la corrente è lenta?	
	A) Fr > 1 (V > c)	С
	B) Fr = 1 (V = c)	-
314	C) Fr < 1 (V < c) Note l'altezza e la velocità media della corrente, come si stabilisce se la corrente è critica?	
314	A) Fr < 1 (V < c)	
	B) Fr = 1 (V = c)	В
	C) Fr > 1 (V > c)	
315	Note l'altezza e la velocità media della corrente, come si stabilisce se la corrente è veloce?	
	A) $Fr = 1 (V = c)$	C
	B) Fr < 1 (V < c)	С
	C) Fr > 1 (V > c)	
316	Cos'è l'altezza critica di una corrente?	
	A) E' l'altezza che la corrente assume nella condizione di stato critico, cioè Fr = 1	Α
	B) E' l'altezza che la corrente assume nella condizione di stato limite, cioè Fr < 1	
247	C) E' l'altezza che la corrente assume nella condizione di alta pressione, cioè Fr > 1	
317	A monte di un risalto idraulico, la corrente deve essere necessariamente:	
	A) lento B) veloce	В
	C) invariato	
318	A valle di un risalto idraulico, la corrente deve essere necessariamente:	
	A) veloce	
	B) rapido	С
	C) lento	
319	Determinare la celerità delle piccole perturbazioni in una corrente a superficie libera	
	quando l'altezza della corrente è di 0,10m.	
	A) C = -0,874 m/s	В
	B) $C = \pm 0,990 \text{ m/s}$	
	C) C = 0,588 m/s	

320	Se una corrente a superficie libera ha l'altezza pari a 0,80m, che valore assumerà la celerità delle piccole perturbazioni?	
	A) $C = \pm 2,80 \text{ m/s}$	Α
	B) C = - 3,25m/s	
	C) C = 2,55 m/s	
321	Per quali valori di Re il regime è laminare nel caso di moti in pressione.	
	A) Re < 3000 circa	6
	B) Re < 4000 circa	С
	C) Re < 2000 circa	
322	Per quali valori di Re il moto è laminare nel caso di moti a superficie libera?	
	A) Re < 500 circa	Α
	B) Re < 700 circa	A
	C) Re < 800 circa	
323	Cosa definisce la seguente equazione 🛭 ¡ = H / Ht dove Ht indica la prevalenza teorica e H	
	quella effettiva fornita da una generica pompa?	
	A) Il rendimento idraulico	Α
	B) La perdita di carico	
	C) La prevalenza iniziale	
324	In un canale a sezione rettangolare molto larga defluisce in moto uniforme acqua a 20°C (g	
	= 9,81), con velocità media di 2 m/s e altezza di 0,3 m. Determinare se la corrente sia lenta o	
	veloce.	Α
	A) Fr = 1,17 > 1 corrente veloce	
	B) Fr = 2,30 ≤ 3 corrente lenta	
	C) Fr = 3,05< 2 corrente lentissima	
325	In un canale a sezione rettangolare, largo 2m, defluisce in moto uniforme acqua a 15°C, con	
	velocità media di 4 m/s e altezza di 0,4m. Determinare se la corrente sia lenta o veloce.	•
	A) Fr = $3.17 \le 3$ corrente costante	С
	B) Fr = 4,30 < 4 corrente lenta	
226	C) Fr = 2,02 > 1 corrente veloce	
326	Durante un temporale, l'acqua di pioggia defluisce su una superficie inclinata con velocità	
	V ₀ = 4 m/s e altezza H ₀ = 1m. Determinare se la corrente sia lenta o veloce. A) Fr = 1,28 > 1 corrente veloce	۸
	B) Fr = 1,62 < 4 corrente lenta	А
	C) Fr = 1,32 ≤ 6 corrente costante	
327	Calcolare la celerità di un'onda solitaria generata a mare da una forte scossa sismica in una	
32,	zona in cui la profondità dell'acqua è di 2 Km.	
	A) c = 722 Km/h	С
	B) c = 605 Km/h	•
	C) c = 504 Km/h	
328	In due canali, aventi la stessa sezione trasversale, defluisce la stessa portata. Se in un canale	
	la corrente è lenta e nell'altro è veloce, è possibile che le due correnti abbiano la stessa	
	energia specifica?	Λ
	A) Si	Α
	B) No	
	C) Solo in alcuni casi	
329	In una corrente lenta, al crescere dell'altezza d'acqua, restando invariata la portata, come	
	varia l'energia specifica?	
	A) L'energia specifica diminuisce	С
	B) L'energia specifica è costante	
	C) L'energia specifica aumenta	

330	Con la seguente formula Qm = $\int_A \rho v dA$ si esprime la:	
	A) portata volumetrica	В
	B) portata di massa	
	C) portata in volume	
331	In un canale una certa portata defluisce in condizioni critiche. La sua energia specifica è	
	maggiore di quella che avrebbe se defluisse come corrente lenta?	
	A) No	Α
	B) Si	
	C) Solo in determinate condizioni di temperatura	
332	In una corrente a superficie libera, in moto uniforme, l'energia specifica si mantiene	
	costante nella direzione del moto?	
	A) No diminuisce	С
	B) Aumenta solo a tratti	
	C) Si rimane costante	
333	Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in	С
	massa della sezione terminale sapendo che la densità dell'aria pari a 100(kg/m³) la velocità	
	pari a 11 (m/s) e l'area A pari a 3(m²).	
	A) $Qm = 2200 \text{ kg/s}$	
	B) Qm = 3100kg/s	
	C) Qm = 3300kg/s	
334	Con riferimento al profilo longitudinale di una generica corrente a superficie libera,in quali	
	condizioni la linea dell'energia è parallela al fondo del canale?	
	A) In moto turbolento l'energia specifica si aumenta nella direzione del moto e,	
	pertanto, la linea dell'energia è parallela al fondo del canale.	В
	B) In moto uniforme l'energia specifica si mantiene costante nella direzione del moto e,	
	pertanto, la linea dell'energia è parallela al fondo del canale.	
	C) In moto permanente l'energia specifica si aumenta nella direzione del moto e,	
	pertanto, la linea dell'energia è parallela al fondo del canale.	
335	In una corrente a superficie libera, in moto permanente, se le perdite di carico sono	
	trascurabili, la pendenza della linea dei carichi totali è uguale a quella del fondo?	
	A) Si	С
	B) Solo in alcuni casi	
	C) No	
336	Quale tra le seguenti equazione esprime il bilancio dell'energia tra due generiche sezioni di	
	una corrente a superficie libera?	
	A) $z_1 + E_1 = z_2 + E_2 + \Delta H d$	A
	B) $z_1 - E_1 = z_2 - E_2 + \Delta Hd$	
	C) $z_1 / E_1 = z_2 + E_2 / \Delta H d$	
337	In un canale a sezione rettangolare, largo b = 1 m, defluisce una portata di 2m³/s con	
	un'altezza di h = 2 m. Calcolare la velocità media.	
	A) V = 3 m/s	В
	B) $V = 1 \text{ m/s}$	
222	C) V = 4 m/s	
338	In un canale a sezione rettangolare, largo 0,8 m, defluisce una portata di 0,7 m ³ /s con un'altezza di 0,35 m, la velocità media di 2,50 m/s (g = 9,81, Vgh = 1,85). Stabilire se la	
	corrente è lenta o veloce.	
	A) Fr = 1,35 > 1 la corrente è veloce	Α
	B) Fr = 2,55 < 1 la corrente è lenta	
	c) Fr = 2,35 < 1 la corrente e lenta	
	C) 11 - 3,33 \(\) 1 id COTTETILE HOLL VALID	

339	In un canale a sezione rettangolare, largo 1m, defluisce una corrente con una velocità media	
	di 4 m/s e un'altezza di 0,4 m($\sqrt[3]{Q^2}$ = 19).Calcolare l'altezza critica.	
	A) K = 1,56 m	С
	B) K = 1,85 m	
	C) K = 1,94 m	
340	In un canale a sezione rettangolare, largo 1m, defluisce una corrente con una velocità media	
	di 4 m/s e un'altezza di 0,4 m, l'altezza critica è K = 0,639 m. Calcolare il valore minimo	
	dell'energia specifica.	٨
	A) E min = 0,959 m	Α
	B) E min = 0,678 m	
	C) E min = 0,859 m	
341	In un canale a sezione rettangolare, largo 1m, defluisce una corrente con una velocità media	
	di 4 m/s e un'altezza di 0,4 m, con g = 0,81. Calcolare l'energia specifica della corrente	
	ponendo $\alpha = 1$.	D
	A) E = 1,45 m	В
	B) E = 1,22 m	
	C) E = 2,32 m	
342	In un canale a sezione rettangolare, largo 6m, defluisce una portata di 12 m³/s di acqua a 10	
	°C con un'altezza di 0,55 m, la velocità media è 3,64 m/s (g=9,81). Stabilire se la corrente sia	
	lenta o veloce.	С
	A) Fr = 1,97 < 2 corrente lenta	C
	B) Fr = 2,98 ≤ 4 corrente lenta	
	C) Fr = 1,57 > 1 corrente veloce	
343	In un canale a sezione rettangolare, largo 6m, defluisce una portata di 12 m ³ /s di acqua a 10	
	°C con un'altezza di 0,55 m. Calcolare la velocità media.	
	A) $V = 3.87 \text{ m/s}$	В
	B) $V = 3,64 \text{ m/s}$	
	C) $V = 4,75 \text{ m/s}$	
344	In un canale a sezione rettangolare, largo 1m, defluisce una portata di acqua a 10 °C, (g =	
	9,81, $\sqrt[3]{Q^2}$ = 9). Calcolare l'altezza critica.	
	A) K = 0,75 m	С
	B) K = 0,85 m	
	C) K = 0,92 m	
345	In un canale a sezione rettangolare, largo 6m, defluisce una portata di acqua a 10 °C con	
	un'altezza di 1 m, la velocità media V = 4 m/s (g = 9,81). Calcolare l'energia specifica della	
	corrente ponendo $\alpha = 1$.	^
	A) E = 1,82 m	Α
	B) E = 2,48 m	
	C) E = -1,55 m	
346	In un canale a sezione rettangolare, largo 4 m, defluisce in condizioni critiche una corrente	
	di acqua con una velocità media di Vc = 3 m/s ed Ac = 8,0 m ² /s. Calcolare la portata critica.	
	A) $Qc = 21 \text{ m}^3/\text{s}$	В
	B) $Qc = 24 \text{ m}^3/\text{s}$	
	C) $Qc = 33 \text{ m}^3/\text{s}$	
347	In un canale a sezione circolare, del diametro di 0,5m, defluisce una corrente con velocità	
	media di 2,8 m/s e altezza di 0,25 m. Stabilire se la corrente sia lenta o veloce.	
	A) Fr = 2,02 > 1 corrente veloce	Α
	B) Fr = 3,40 < 4 corrente lenta	
	C) Fr = 5,01 < 5 corrente lenta	

348	In un canale a sezione circolare, del diametro di 0,5m, defluisce una corrente con velocità	
	media di V = 3 m/s e A = 11m². Calcolare la portata.	
	A) $Q = 45 \text{ m}^3/\text{s}$	С
	B) $Q = 52 \text{ m}^3/\text{s}$	
	C) $Q = 33 \text{ m}^3/\text{s}$	
349	In un canale a sezione trapezio, largo al fondo 2 m, con sponde inclinate di 30° rispetto alla	
	verticale, defluisce una portata di 12 m³/s, con un'altezza di 1,73m, la velocità media è V =	
	2,31 m/s (g= 9,81) ed h _m =1,30m. Stabilire se la corrente sia lenta o veloce.	۸
	A) Fr = 0,647 < 1 corrente lenta	Α
	B) Fr = 0,987 > 1 corrente veloce	
	C) Fr = 0,852 > 2 corrente veloce	
350	In una corrente a superficie libera, in moto uniforme, all'aumentare della pendenza del	
	canale, mantenendosi costante la portata, l'altezza di moto uniforme:	
	A) aumenta	В
	B) diminuisce	
	C) rimane costante	
351	E' corretto affermare che, in una corrente a superficie libera, in moto uniforme, la perdita di	
	carico tra due sezioni può essere calcolata semplicemente moltiplicando la pendenza del	
	canale per la distanza tra le due sezioni?	6
	A) No	С
	B) Solo in alcuni casi	
	C) Si	
352	La sezione di minimo costo di un canale è quella che, a parità di area, ha il raggio idraulico:	
	A) più piccolo	
	B) più grande	В
	C) uguale alla sezione di contatto	
353	La sezione di minimo costo di un canale, a parità di area, è quella:	
	A) trapezoidale	6
	B) triangolare	С
	C) circolare	
354	Per un canale rettangolare, la sezione di minimo costo è quella per cui il rapporto tra	
	l'altezza della corrente e la larghezza del canale è:	
	A) il doppio della larghezza della sezione	В
	B) la metà della larghezza della sezione	
	C) un terzo della larghezza della sezione	
355	Cosa accade alla portata di una corrente in moto uniforme in un canale le cui pareti sono di	
	mattoni (c = $80m^{1/3}/s$), se, a causa della crescita di alghe sulle pareti, il valore di c si	
	dimezza, mantenendosi costanti le dimensioni della sezione trasversale?	•
	A) La portata si raddoppia	С
	B) La portata rimane uguale	
	C) La portata si dimezza	
356	Calcolare la portata in un canale a sezione trapezia, con pareti di cemento liscio (c = 20 m	
	$^{1/3}$ /s), la corrente ha un'altezza di moto uniforme di 0,45 m. Sapendo che i = 4 Rio $^{2/3}$ = 3 ed	
	$A_0 = 2m^2$.	٨
	A) $Q = 240 \text{ m}^3/\text{s}$	Α
	B) $Q = 220 \text{ m}^3/\text{s}$	
	C) $Q = 265 \text{ m}^3/\text{s}$	

357	In un canale a sezione trapezia, in muratura ordinaria ($c = 1 \text{ m}^{1/3}/\text{s}$), largo alla base 5m,	
	defluisce, in moto uniforme, una portata di 3 m ³ /s, $R_{i0}^{4/3}$ = 4 m e A_0 = 2 m ² . Calcolare la	
	pendenza del canale.	С
	A) i = 42 %	
	B) i = 48 %	
	C) i = 56 %	
358	In due canali a sezione rettangolare identici, defluisce la stessa portata, con l'altezza di 3m.	
	Se i due canali vengono uniti, formando un unico canale a sezione rettangolare, largo 6m, di	
	quanto aumenta, in percentuale, la portata di una corrente con altezza di 3m, rispetto a	
	quella che transitava complessivamente nei due canali, sapendo che Qu =5m³/s e Q = 4	В
	m ³ /s?	
	A) 52%	
	B) 63%	
	C) 74%	
359	Calcolare l'area della sezione trasversale, in un canale triangolare con pareti in legno	
	piallato, inclinate di 45° rispetto alla verticale con un'altezza di h_0 = 0,4 m.	
	A) $A_0 = 0.22 \text{ m}^2$	С
	B) $A_0 = -0.48 \text{ m}^2$	
	C) $A_0 = 0.16 \text{ m}^2$	
360	Con riferimento al profilo longitudinale di una generica corrente a superficie libera, la linea	
	dell'energia si ottiene:	
	A) riportando sulla verticale di ciascuna sezione, a partire dal punto sul profilo di	
	corrente, un segmento pari all'altezza cinetica della velocità media	
	B) riportando sulla verticale di ciascuna sezione, a partire dal punto sul profilo di	A
	corrente, un segmento maggiore all'altezza cinetica della velocità media	
	C) riportando sulla verticale di ciascuna sezione, a partire dal punto sul profilo di	
	corrente, un segmento minore all'altezza cinetica della velocità media	
361	In un canale a sezione trapezia, largo alla base b = 2 m e con sponde inclinate di 45° (tan θ =	
	1) rispetto alla verticale, deve essere convogliata in moto uniforme una portata, $h_0 = 1$ m.	
	Calcolare l'area della sezione trasversale.	
	A) $A_0 = 3 \text{ m}^2$	A
	B) $A_0 = 4 \text{ m}^2$	
	C) $A_0 = 5 \text{ m}^2$	
362	In un canale a sezione trapezia, largo alla base b = 2 m e con sponde inclinate di 45° (cos θ =	
	0,70)rispetto alla verticale, deve essere convogliata in moto uniforme una portata, sapendo	
	che h ₀ = 1m. Calcolare il contorno bagnato.	_
	A) $C_{b0} = 4,65 \text{ m}$	В
	B) $C_{b0} = 4,86 \text{ m}$	
	C) $C_{b0} = 5.35 \text{ m}$	
363	In un canale a sezione trapezia, largo alla base 1,5 m e con sponde inclinate di 45° rispetto	
	alla verticale, deve essere convogliata in moto uniforme una portata, $A_0 = 3m^2$, $C_{b0} = 5$ m.	
	Calcolare il raggio idraulico.	
	A) $R_{i0} = 1,60 \text{ m}$	С
	B) $R_{i0} = 1,80$ m	
	C) $R_{i0} = 1,67m$	
364	Il rapporto tra la potenza meccanica ceduta e quella ricevuta è detto:	С
	A) rendimento idraulico	
	B) rendimento elettrico	
	C) rendimento meccanico	
	,	1

365	In una corrente veloce, al crescere dell'altezza d'acqua, restando invariata la portata, come	
	varia l'energia specifica?	
	A) L'energia specifica è costante	В
	B) L'energia specifica diminuisce	
	C) L'energia specifica aumenta	_
366	Un impianto idroelettrico viene alimentato da un grande serbatoio, sapendo che la potenza	Α
	della turbina è pari a 380 KW e la potenza che il fluido cede alla turbina è pari a 1600 KW	
	determinare il rendimento della turbina.	
	A) $n_T = 24 \%$	
	B) $n_T = 32 \%$	
	C) $n_T = 35 \%$	
367	Nel moto permanente di una corrente lenta in un canale orizzontale, nella direzione del	
	moto l'altezza della corrente:	
	A) aumenta	В
	B) diminuisce	
	C) rimane costante	
368	Nel moto permanente in un canale a debole pendenza, se l'altezza della corrente è	
	maggiore di quella di moto uniforme, nella direzione del moto l'altezza della corrente:	
	A) Aumenta	Α
	B) Diminuisce	
	C) Rimane costante	
369	Nel moto permanente di una corrente veloce in un canale orizzontale, nella direzione del	
	moto l'altezza della corrente:	
	A) Aumenta	Α
	B) Diminuisce	
	C) Rimane costante	
370	Nel moto permanente in un canale a debole pendenza, se la corrente è lenta ed ha altezza	
	minore di quella di moto uniforme, nella direzione del moto l'altezza della corrente:	
	A) Rimane costante	С
	B) Aumenta	
271	C) diminuisce Ad un risalto idraulico è associato una:	
371	A) perdita di energia	
	B) aumento di energia	Α
	C) variazione costante dell'energia	
372	In un canale a sezione rettangolare, con pareti in cemento lisciato largo b = 3m, con	
	pendenza del fondo dello 0,2%, defluisce in moto uniforme una corrente con un'altezza di	
	h ₀ = 2 m. Determinare il contorno bagnato.	
	A) $C_{b0} = 5m$	С
	B) C _{b0} = 6m	
	C) $C_{b0} = 7m$	
373	In un canale a sezione rettangolare, con pareti in cemento lisciato largo b = 3m, con	
	pendenza del fondo dello 0,2%, defluisce in moto uniforme una corrente con un'altezza	
	h = 2 m. Determinare l'area della sezione trasversale.	
	A) $A_0 = 6 \text{ m}^2$	A
	B) $A_0 = 5 \text{ m}^2$	
	C) $A_0 = 4 \text{ m}^2$	

374	In un canale a sezione rettangolare, con pareti in cemento lisciato (c = $90 \text{m}^{-1/3}$ /s , largo 3m, con pendenza del fondo dello 0,2%, defluisce in moto uniforme una corrente con un'altezza	
	di 1,2 m, $A_0 = 4 \text{ m}^3 \text{ e C}_{b0} = 6\text{m}$. Determinare il raggio idraulico.	С
	A) $R_{i0} = 0.687 \text{ m}$	C
	B) $R_{i0} = 0.699 \text{ m}$	
	C) $R_{i0} = 0,667 \text{ m}$	
375	In canale a sezione rettangolare, largo 8m, a valle di una paratoia si forma un risalto. A	
	monte del risalto, la corrente ha un'altezza di h ₂ =2 m e h ₁ =6 m Calcolare la perdita di	
	carico.	۸
	A) $\Delta E = 1,33$ m	Α
	B) $\Delta E = 2,00 \text{m}$	
	C) $\Delta E = 1,64 \text{m}$	
376	Calcolare la perdita di carico che si ha in un risalto in un canale molto largo, a monte del	
	quale la corrente ha un'altezza (h₁)di 4m e h₂=2m.	
	A) ΔE = 0,45m	С
	B) $\Delta E = 0.62 \text{m}$	
	C) ΔE = 0,33m	
377	In un canale a sezione rettangolare defluisce una portata di 10 m ³ /s. Un risalto si localizza	
	tra un'altezza di 0,5m e una di 4m, essendo $\rho = 1000\text{kg/m}^3$ la densità dell'acqua, $\Delta E = 2\text{m}$	
	e g = 9,81. Calcolare la potenza meccanica dissipata nel risalto.	6
	A) Pd = 180400 kW	С
	B) Pd = 152340 kW	
	C) Pd = 196200 kW	
378	La portata derivata da un cisterna in un canale rettangolare, largo 4m, viene regolata	
	tramite una paratoia piana ortogonale. Il livello nella cisterna è di 10m rispetto al fondo del	
	canale e la paratoia lascia aperta una luce di altezza 2m. Calcolare la portata quando	
	l'altezza della corrente a valle della paratoia è di 3m, μ = 1 e a = 1m (√2gh = 14).	В
	A) $Q = 115 \text{ m}^3/\text{s}$	
	B) $Q = 112 \text{ m}^3/\text{s}$	
	C) $Q = 122 \text{ m}^3/\text{s}$	
379	In un canale a sezione rettangolare, largo 5m, è inserita una paratoia piana verticale che	
	lascia aperta sul fondo una luce di 2m. Calcolare il coefficiente di efflusso, quando l'altezza	
	della corrente a monte della paratoia è di 2m.	۸
	Α) μ = 0,47	Α
	B) μ = 0,55	
	C) $\mu = 0.66$	
380	In un canale a sezione rettangolare, largo 3m, è inserita una paratoia piana verticale che	
	lascia aperta sul fondo una luce di 1, μ = 2 ($\sqrt{2}$ gh = 6,26). Calcolare la portata, quando	
	l'altezza della corrente a monte della paratoia è di 2m.	D
	A) $Q = 22.9 \text{ m}^3/\text{s}$	В
	B) $Q = 37.6 \text{ m}^3/\text{s}$	
	C) $Q = 35.9 \text{ m}^3/\text{s}$	
381	Determinare il coefficiente di efflusso, a monte di una paratoia piana perpendicolare, che	
	lascia aperta sul fondo una luce di 2m, sapendo che l'altezza della corrente è di h =4m.	
	Α) μ = 0,54	Α
	B) μ = 0,57	
	C) μ = 0,60	
L	-/ F: -7/7-7	

382	A monte di una paratoia piana verticale, che lascia aperta sul fondo una luce di 0,3m,sapendo che Q = 18 m³/s, b = 2m. Calcolare la portata per unità di larghezza in corrispondenza della sezione contratta.	
	•	В
	A) $q = 7 \text{ m}^2/\text{s}$	
	B) $q = 9 \text{ m}^2/\text{s}$	
	C) $q = 11m^2/s$	
383	A monte di una paratoia piana verticale, che lascia aperta sul fondo una luce di 0,3m, avente Q = 4 m³/s, b = 3m.Calcolare la portata per unità di larghezza in corrispondenza della	
	sezione contratta.	
	A) $q = 23 \text{ m}^2/\text{s}$	С
	B) $q = 14 \text{ m}^2/\text{s}$	
	C) $q = 11 \text{ m}^2/\text{s}$	
204		
384	Uno stramazzo a spigolo vivo è:	
	A) un dispositivo per la misura della portata delle correnti a superficie libera	Α
	B) un dispositivo per la misura dell'altezza delle correnti a superficie libera	
	C) un dispositivo per la misura delle correnti a pelo libero	
385	Da cosa è costituito uno stramazzo a spigolo vivo?	
	A) Da una parete orizzontale alla direzione del moto	
	B) Da una parete parallela alla direzione del moto che lascia aperta inferiormente una	С
	luce	C
	C) Da una parete verticale, ortogonale alla direzione del moto che lascia aperta	
	superiormente una luce	
386	In base a cosa vengono classificati gli stramazzi a spigolo vivo?	
	A) Alla forma della luce	^
	B) Alla forma del recipiente	Α
	C) Alla forma della sezione	
387	Calcolare il coefficiente di efflusso in un canale a sezione rettangolare, in cui è inserito uno	
	stramazzo Bazin, a monte del quale l'altezza della corrente è 1,55m, il carico efficace è	
	he = 0,02m ed a =1.	_
	A) $\mu_s = 0.009$	А
	B) $\mu_s = 0.007$	
	C) $\mu_s = 0.006$	
388	Calcolare il carico efficace in un canale a sezione rettangolare, largo 4m, in cui è inserito uno	
	stramazzo Bazin, essendo $h_s = 2 \text{ m}$.	
	A) $h_e = 3,002 \text{ m}$	С
	B) $h_e = 4,001 \text{ m}$	C
	C) $h_e = 2,001 \text{ m}$	
389	Calcolare la portata in un canale a sezione rettangolare, largo 4m, in cui è inserito uno stramazzo Bazin, μ s = 2, μ s = 1m e g = 9,81 (ν 2g μ s = 4,43).	
	A) $Q = 5.84 \text{ m}^3/\text{s}$	۸
	$\boldsymbol{\cdot}$	Α
	B) $Q = 5.97 \text{ m}^3/\text{s}$	
-	C) $Q = 5.78 \text{ m}^3/\text{s}$	
390	Un tubo di Pitot misura:	
	A) la temperatura critica	В
	B) la pressione di ristagno	=
	C) la velocità del fluido	

391	Lo stramazzo a larga soglia è:	
	A) una soglia rettangolare di altezza tale da costringere la corrente a rigurgitare verso	
	monte per recuperare l'energia che le manca per superare l'ostacolo	
	B) una soglia verticale di altezza tale da costringere la corrente a rigurgitare verso il	Α
	basso per recuperare l'energia che le manca per superare l'ostacolo	
	C) una soglia triangolare di altezza tale da costringere la corrente a rigurgitare verso il	
	basso per recuperare l'energia	
392	In un canale rettangolare largo 3m è inserito uno stramazzo a larga soglia alto 1m, a monte	
	del quale l'altezza della corrente è 1,6m, μ_s = 4, h_s = 1 e g = 9,81 (sapendo che $\sqrt{2}$ 2gh _s =	
	4,43).Calcolare la portata.	В
	A) $Q = 30,15 \text{ m}^3/\text{s}$	
	B) $Q = 26.58 \text{ m}^3/\text{s}$	
	C) $Q = 22,44 \text{ m}^3/\text{s}$	
393	In un canale a sezione trapezia con larghezza al fondo di 4m e sponde inclinate di 45°	
	(tan45° = 1) defluisce, in moto uniforme, una portata di 18m³/s con un'altezza di 0,6m.	
	Calcolare l'area della sezione.	Α
	A) $A = 2.76 \text{ m}^2$	
	B) $A = 3.76 \text{ m}^2$	
	C) $A = 2.96 \text{ m}^2$	
394	In un canale a sezione trapezia con larghezza al fondo di 4m e sponde inclinate di 45° (tan	
	45° = 1)defluisce, in moto uniforme, una portata di 18m³/s con un'altezza di 0,6m. Calcolare	
	la larghezza in superficie B.	С
	A) B = 3,2 m	
	B) B = 6,2 m	
205	C) B = 5,2 m	
395	In un canale a sezione trapezia con larghezza al fondo di 4m e sponde inclinate di 45° defluisce, in moto uniforme, una portata di 18m³/s con un'altezza di 0,6m, g = 9,81,	
	A = 2.76 m ² e B = 5.20 m. Determinare se la corrente sia lenta o veloce, sapendo che V = 6.52	
	m/s.	С
	A) Fr = 1,33 > 1 corrente lenta	C
	B) Fr = 3,86 > 3 corrente molto lenta	
	C) Fr = 2,86 > 1 corrente veloce	
396	La pompa di un impianto di sollevamento possiede una potenza pari a 40 KW, la potenza	Α
	che il fluido riceve pari a 3800 KW, determinare il rendimento meccanico della pompa.	
	A) $\eta_P = 95$	
	B) η _P = 110	
	C) $\eta_P = 120$	
397	Determinare il carattere cinematico di una corrente con velocità media di 4m/s,altezza 0,2m	
	e g = 9,81.	
	A) Fr = 2,86 >1 corrente veloce	Α
	B) Fr = 0,86 < 1 corrente lenta	
	C) Fr = 3,86 >1 corrente critica	
398	Determinare il carattere cinematico di una corrente con velocità media di 4m/s, altezza 2m	
	e g = 9,81.	
	A) Fr = 1,86 >1 corrente veloce	В
	B) Fr = 0,903 < 1 corrente lenta	
	C) Fr = 3,86 >1 corrente critica	
399	Determinare il carattere cinematico di una corrente con velocità media di 4m/s, altezza	ļ
	1,63m e g = 9,81.	
	A) Fr = 1,89 corrente veloce	С
	B) Fr = 0,55 corrente lenta	
	C) Fr = 1,00 corrente critica	

400	Quale tra i seguenti dispositivi serve a misurare la velocità del fluido?	
	A) Il venturimetro	Α
	B) Il tubo di Pitot	
404	C) Il sifone	
401	Un canale a sezione trapezia, con larghezza al fondo di 4m e sponde inclinate di 60° (tan60°	
	= 1,73) rispetto alla verticale, ha pendenza del fondo dello 0,1% e pareti di mattoni, h ₀ = 2m. Calcolare l'area della sezione trasversale.	
		С
	A) $A_0 = 15.8 \text{ m}^2$ B) $A_0 = 24.9 \text{ m}^2$	
	C) $A_0 = 14.9 \text{ m}^2$	
402	Un canale a sezione trapezia, con larghezza al fondo di 4m e sponde inclinate di 60° (cos 60°	
402	= 0,5) rispetto alla verticale, ha pendenza del fondo dello 0,1% e pareti di mattoni, h_0 = 2m.	
	Calcolare il contorno bagnato.	
	A) $C_{bo} = 12,0 \text{ m}$	Α
	B) C _{bo} = 15,0 m	
	C) $C_{bo} = 22,0 \text{ m}$	
403	Un canale a sezione trapezia, con larghezza al fondo di 4m e sponde inclinate di 60° rispetto	
403	alla verticale, ha pendenza del fondo dello 0,1% e pareti di mattoni (c = 80 m $^{1/3}$ /s), A ₀ =	
	14,9m e C_{b0} = 12,0 m. Calcolare il raggio idraulico.	
	A) $R_{io} = 2,24 \text{ m}$	В
	B) R _{io} = 1,24 m	
	C) $R_{io} = 1,54 \text{ m}$	
404	Attraverso un tubo fluiscono 9cm³/min di acqua. L'estremità B del tubo si trova 70 cm più in	В
	alto dell'estremità A ed è aperta e a contatto con l'atmosfera. Quanti cm³ di acqua	_
	fluiscono dal tubo in 10min?	
	A) $\Delta V = 75 \text{ cm}^3$	
	B) $\Delta V = 90 \text{ cm}^3$	
	C) $\Delta V = 88 \text{ cm}^3$	
405	Un contenitore d'acqua cilindrico ruota in senso antiorario attorno al suo asse verticale,	Α
	sapendo che ω = 80 rad/s. Calcolare la vorticità delle particelle di liquido nel contenitore.	
	A) $\Omega = 160 \text{ K rad/s}$	
	B) Ω = 175 K rad/s	
	C) Ω = 180 K rad/s	
406	Un contenitore cilindrico parzialmente pieno d'olio avente raggio uguale a 3m, in	С
	corrispondenza del bordo possiede una velocità di 9m/s in direzione antioraria, si determini	
	la velocità angolare.	
	A) $\omega = 1.2 \text{ rad/s}$	
	B) $\omega = 5 \text{ rad/s}$	
	C) $\omega = 3 \text{ rad/s}$	
407	Gli stramazzi a spigolo vivo vengono classificati in base alla:	
	A) forma della luce	Α
	B) direzione della luce	
	C) abbondanza della luce	
408	Un contenitore d'acqua della capacità di 4,0 l si riempie in 8 s. Calcolare la portata di	Α
	volume, in I/min.	
	A) Q = 30 l/min	
	B) Q = 37 l/min	
	C) Q = 4,1 l/min	

409	Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l'acqua	В
	(d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 20m?	
	A) P = 12,6 atm	
	B) P = 1,94 atm	
	C) P = 1,06 atm	
410	A monte di una paratoia piana, che lascia aperta sul fondo una luce è uguale a=0,2m,	
	l'altezza della corrente è pari a h=2m. Calcolare il coefficiente di efflusso.	_
	A) $\mu = 0.50$	В
	B) $\mu = 0.60$	
	C) µ = 0,75	
411	Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso	В
	in acqua pesa 460N, sapendo che la densità del corpo è pari a 40 kg/m³ e la densità	
	dell'acqua è pari a 200 kg/m³.	
	A) $dr = 0.7$	
	B) $dr = 0.2$	
	C) dr = 0,5	
412	A monte di una paratoia piana, che lascia aperta sul fondo una luce di 0,3m, l'altezza della	
	corrente è di 1,8m, hc=0,3m e q = 3m²/s. Calcolare la velocità della corrente nella sezione	
	contratta.	С
	A) Vc = 8 m/s	
	B) Vc = 6 m/s	
442	C) Vc = 10 m/s	Δ.
413	Un tubo rigido orizzontale viene attraversato da una portata di 5cc/s, quanto vale la	Α
	pressione trasmurale sapendo che Pint è pari a 52Pa e Patm è pari a 44 Pa?	
	A) Pt = 8 Pa	
	B) Pt = 11 Pa	
44.4	C) Pt = 12 Pa	
414	In una condotta in acciaio, defluisce aria alla pressione di 1 bar, con una velocità media V =	
	9 m/s, sapendo che Re = 3544 il regime di moto è: A) debolmente laminare	В
	B) turbolento	Ь
	C) laminare	
415	In una conduttura defluisce in regime di moto laminare olio, con una velocità media di	
415	0,8m/s , ed A = 6. Calcolare la portata?	
	A) $Q = 5.2 \text{ m}^3/\text{s}$	В
	B) $Q = 4.8 \text{ m}^3/\text{s}$	ט
	C) $Q = 2.5 \text{ m}^2/\text{s}$	
416	Nello studio del moto di un fluido ad alta velocità è necessario tener conto della sua:	
710	A) densità	
	B) viscosità	С
	C) comprimibilità	
417	Determinare la portata di aria che defluisce in una condotta in acciaio lunga 7m, avente la	
	velocità media $V = 5 \text{ m/s} e A = 2 \text{ m}^2$.	
	A) Q = 1,7 m ³ /s	С
	B) Q = 1,9 m	-
	C) $Q = 2.5 \text{ m}^3/\text{s}$	
418	In una tubazione nella quale defluisce olio, essendo il moto laminare e considerando la	
	cadente J pari a 0,04, ed $L = 200$ la perdita di carico ΔH tra le sezioni di estremità della	
	tubazione è pari a:	_
	A) $\Delta H = 9 \text{ m}^2$	С
	B) ΔH = 5 m	
	C) $\Delta H = 8 \text{ m}$	
	•	
	C) AH = 8 M	

419	In una condotta del diametro di 9 mm, scorre acqua alla temperatura di 35°C, sapendo che il	
	numero di Re è pari a 946 il regime di moto sarà:	
	A) laminare	Α
	B) turbolento	
	C) puramente turbolento	
420	Un tubo rigido orizzontale viene attraversato da una portata pari a 8cc/s la sua sezione è di	В
	4cm ² , restringendosi per un breve tratto fino ad una sezione di 4mm ² . Nel primo tratto	
	calcolare quanto vale la velocità del liquido.	
	A) $v_1 = 5 \text{ cm/s}$	
	B) $v_1 = 2 \text{ cm/s}$	
	C) $v_1 = 6 \text{ cm/s}$	
421	Determinare la pressione assoluta in un luogo dove alla profondità di 2m in un liquido che	
	possiede una densità relativa di 600 kg/m³, con pressione atmosferica locale pari a 92 kPa.	
	A) 14 kPa	В
	B) 104 kPa	
	C) 144 kg	
422	Quanto misura la velocità media di un fluido, presente in un impianto di condizionamento,	В
	in una condotta di acciaio rettangolare di 300 mm × 400 mm viene canalizzata aria calda,	
	con una portata di 0,4 m³/s.	
	A) 1,52 m/s	
	B) 3,33 m/s	
	C) 4,05 cm	
423	Attraverso un tubo con diametro pari a 0,1 m passa una portata d'acqua pari a 9,42 l*s ⁻¹	
	(peso specifico uguale a 9806 N*m ⁻³) se la cadente misurata in queste condizioni è pari a	
	0,0191 calcolare il numero di Reynolds sapendo che il tubo ha un diametro di 0,1m	
	(viscosità cinematica dell'acqua pari a 10 ⁻⁶ m ² *s ⁻¹).	Α
	A) Re = 120000	
	B) Re = 160000	
	C) Re = 140000	
424	Lo stato sonico viene chiamato anche:	
	A) stato critico	Α
	B) stato adiacente	/ \
	C) stato convergente	
425	Qual è la velocità massima che un fluido può raggiungere in un ugello convergente?	
	A) Velocità nel vuoto	В
	B) Velocità del suono	5
	C) Velocità divergente	
426	Come viene chiamato un ugello a sezione prima decrescente nel senso del moto poi	
	crescente?	
	A) Ugello convergente - decrescente	В
	B) Ugello convergente - divergente	
	C) Ugello critico - assiale	
427	Attraverso un tubo con diametro pari a 0,1 m passa una portata d'acqua con peso specifico	
	uguale a 6000 N*m ⁻³ , se la cadente misurata in queste condizioni è pari a 0.02 calcolare lo	
	sforzo tangenziale alle pareti sapendo che il tubo ha un diametro di 0,1m ed il raggio	
	idraulico è pari a 4,02m.	Α
	A) 4824 N*m ⁻²	
	B) 4099 N*m ⁻²	
	C) 4454 N*m ⁻²	

400	1	
428	La pressione presente nell'ambiente in cui sbocca un ugello è chiamata:	
	A) Controversa	С
	B) Controcorrente	
	C) Contropressione	
429	Calcolare il peso di una massa di liquido di 90 Kg che si trova al polo (g = 9,83 m*s ⁻²).	
	A) 884,7 N	Α
	B) 895,7 N	
	C) 894,6 N	
430	Calcolare la densità di un liquido che ha un peso specifico pari a 9100 N*m ⁻³ .	
	A) 932	В
	B) 928	
	C) 912	
431	Un liquido ha una densità pari a 1400 kg*m ⁻³ . Determinare il peso specifico sulla luna	
	sapendo che l'accelerazione di gravità è pari a 1,67 m*s ⁻² .	
	A) 2586 N*m ⁻³	С
	B) 2574 N*m ⁻³	
	C) 2338 N*m ⁻³	
432	Un volume di 3,5 m³ di aria pesa 38 N, calcolare il peso specifico.	
	A) 10,6 N*m ⁻³	Α
	B) 12,6 N*m ⁻³	
	C) 11,4 N*m ⁻³	
433	Determinare il peso specifico sulla terra di un liquido che ha densità pari a 1600 kg*m ⁻³ .	
	A) 15886 N*m ⁻³	С
	B) 14697 N*m ⁻³	
	C) 15696 N*m ⁻³	
434	In un punto di un liquido affondato h = 15m sotto la superficie libera, la pressione relativa è	
	pari a 120000 Pa, calcolare il peso specifico del liquido.	
	A) 8120 N*m ⁻³	В
	B) 8000 N*m ⁻³	
	C) 8200 N*m ⁻³	
435	Un gas è contenuto in un cilindro chiuso da un pistone a perfetta tenuta, distante h = 1,40	
	dal fondo, calcolare a quale distanza deve portarsi il pistone affinché, mantenendosi	
	costante la temperatura il peso specifico del gas raddoppi il suo valore.	Α
	A) 0,70 m	
	B) 0,90 m	
400	C) 1,00 m	
436	Un volume di 4,5 m³ di aria pesa 44 N, calcolare la densità dell'aria, sapendo che il peso	
	specifico dell'aria è pari a 18,6 N*m ⁻³ .	
	A) 1,87 kg*m ⁻³	С
	B) 1,50 kg*m ⁻³ C) 1,90 kg*m ⁻³	
427		D
437	Calcolare la portata in massa che si ha in una condotta di un impianto di condizionamento	В
	avente densità pari a 12 (kg/m³) e la portata paria a 0,6 n(m³/s).	
	A) Qm = 6,1 kg/s	
	B) Qm = 7,2 kg/s	
420	C) Qm = 7,9 kg/s	
438	Nella sezione di sbocco di un ugello convergente la velocità è pari a quella del suono. Se,	
	mantenendo inalterato le condizioni all'imbocco, si riduce ulteriormente l'area della	
	sezione di sbocco,cosa accade alla velocità?	С
	A) Aumenta	
	B) Diminuisce	
	C) Rimane costante	

439	Nella sezione di sbocco di un ugello convergente la velocità è pari a quella del suono. Se, mantenendo inalterato le condizioni all'imbocco, si riduce ulteriormente l'area della	
	sezione di sbocco,cosa accade alla portata?	В
	A) Aumenta	D
	B) Diminuisce	
	C) Rimane costante	
440	Se per rallentare un fluido in moto supersonico lo facessimo defluire in un divergente il	
	fluido:	
	A) Accelera	Α
	B) Decelera	
	C) Rimane costante	
441	Se per accelerare un fluido in moto supersonico lo facessimo defluire in un divergente il	
	fluido:	
	A) Accelera	Α
	B) Decelera	
	C) Rimane costante	
442	In un fluido in moto subsonico in un ugello convergente, fissate le condizioni all'imbocco,	
	qual è l'effetto di un abbassamento della contropressione fino al valore critico sui valori	
	della velocità nella sezione di sbocco?	В
	A) La velocità aumenta alla velocità del suono	
	B) La velocità è pari alla velocità del suono	
	C) La velocità diminuisce alla velocità del suono	
443	In un fluido in moto subsonico in un ugello convergente, fissate le condizioni all'imbocco,	
	qual è l'effetto di un abbassamento della contropressione fino al valore critico sui valori	
	della pressione nella sezione di sbocco?	С
	A) La pressione è maggiore della pressione critica	
	B) La pressione è minore della pressione critica	
	C) La pressione è pari alla pressione critica	
444	In un fluido in moto subsonico in un ugello convergente, fissate le condizioni all'imbocco,	
	qual è l'effetto di un abbassamento della contropressione fino al valore critico sui valori	
	della portata nella sezione di sbocco?	Α
	A) La portata assume il valore massimo possibile	
	B) La portata assume il valore più basso ammissibile	
445	C) La portata assume valori costanti	
445	Fino a quale dei seguenti valori può spingersi il rendimento di una turbina? A) Oltre 0,90	
	B) Inferiore a 0,90	Α
	C) Compreso tra 0,60 e 0,85	
446	Nel moto isoentropico di un fluido in un convergente - divergente avente velocità subsonica	
440	in corrispondenza della gola, qual è l'effetto del tratto divergente sui valori di pressione?	
	A) La pressione rimane costante	С
	B) La pressione diminuisce	C
	C) La pressione aumenta	
447	Fino a quale dei seguenti valori può spingersi il rendimento di una pompa?	
/	A) Oltre 0,90	
	B) Compreso tra 0,60 e 0,85	В
	C) Inferiore a 0,90	
448	Se in corrispondenza della gola un fluido ha velocità diversa dal valore sonico, è possibile	
770	accelerarlo fino a velocità supersoniche?	
	A) No	Α
	B) Si	^
	C) Non sempre	
	oj Holl Jellipie	

449	E' possibile che un'onda d'urto si formi nel tratto convergente di un ugello convergente -	
	divergente?	
	A) No	Α
	B) Si	
	C) Si in qualunque caso	
450	A valle di un'onda d'urto normale, il numero di Mach può essere maggiore di 1?	
	A) No	۸
	B) Si	Α
	C) Si sono nel caso di basse pressioni	
451	Attraverso un tubo fluiscono 96 (cm³/s) di acqua. L'estremità B del tubo si trova 50 cm più	
	in alto dell'estremità A ed è aperta e a contatto con l'atmosfera. La sezione del tubo in B	
	vale 6 cm ² . Quanto vale la velocità media dell'acqua in B?	
	A) $v_b = 18 \text{ m/s}$	С
	B) $v_b = 20 \text{ m/s}$	
	C) $v_b = 16 \text{ m/s}$	
452	Qual è l'influenza di un'onda d'urto normale sulla temperatura statica?	
	A) Aumenta	Α
	B) Rimane invariata	А
	C) Diminuisce	
453	Qual è l'influenza di un'onda d'urto normale sulla temperatura di ristagno?	
	A) Aumenta	n
	B) Non varia	В
	C) Diminuisce	
454	Qual è l'influenza di un'onda d'urto normale sulla pressione statica?	
	A) Diminuisce	
	B) Non varia	Α
	C) Aumenta	
455	Qual è l'influenza di un'onda d'urto normale sulla pressione di ristagno?	
	A) Non varia	
	B) Diminuisce	В
	C) Aumenta	
456	Qual è la caratteristica principale dei flussi di Rayleigh?	
	A) La presenza di scambio di calore attraverso le pareti del condotto	_
	B) La presenza di moto semipermanente e unidimensionale	Α
	C) La presenza di basse temperature e pressioni	
457	Nei flussi di Rayleigh, come cambia l'entropia del fluido quando esso assorbe calore?	
	A) Aumenta	
	B) Diminuisce	Α
	C) Rimane costante	
458	Un volume di aria V = 7,5 m³ e pesa 64 N, calcolare il peso specifico.	
-130	A) 8,53 N*m ⁻³	
	B) 8,83 N*m ⁻³	Α
	C) 8,59 N*m ⁻³	
459	Nel flusso di Rayleigh subsonico, qual è l'effetto del riscaldamento del fluido sulla sua	
133	velocità?	
	A) Aumenta	Α
	B) Diminuisce	
	C) Rimane invariata	
	-,	

460	Nel flusso di Rayleigh supersonico, qual è l'effetto del riscaldamento del fluido sulla sua	
	velocità?	
	A) Aumenta	В
	B) Diminuisce	
	C) Rimane invariata	
461	Un fluido in moto attorno a un corpo immerso esercita sul corpo una forza la cui	
	componente nella direzione del moto è chiamata:	_
	A) azione di resistenza	С
	B) azione di stallo	
	C) azione di trascinamento	
462	Un fluido in moto attorno a un corpo immerso esercita sul corpo una forza la cui	
	componente nella direzione normale al moto è chiamata:	
	A) portanza	Α
	B) incidenza	
	C) resistenza	
463	Se un corpo immerso in un fluido è in moto, il fluido esercita sul corpo nella direzione del	
	moto una forza chiamata:	
	A) resistenza all'avanzamento	Α
	B) resistenza alla corda	
	C) resistenza al limite	
464	Determinare la pressione pi all'interno di una goccia d'acqua del raggio R=0.025 mm alla	
	temperatura di 293 K, quando la pressione esterna è pari a quella normale atmosferica:	_
	pe=107 Pa, sapendo che Δp = 4800 Pa.	С
	A) pi = 5350 Pa	
	B) pi = 4605 Pa	
	C) pi = 4907 Pa	
465	La resistenza d'attrito è proporzionale alla:	
	A) temperatura	С
	B) pressione	
466	C) viscosità	
466	La resistenza al moto dovuta agli sforzi normali sulle pareti solide è chiamata:	
	A) resistenza di forma	Α
	B) resistenza d'attrito	
467	C) resistenza elastica	
467	Il coefficiente di resistenza e il coefficiente di portanza sono due quantità adimensionali che	
	rappresentano:	D
	A) le variazioni di temperatura e viscosità di un corpo B) le caratteristiche di resistenza e di portanza di un corpo	В
	B) le caratteristiche di resistenza e di portanza di un corpo C) le variazioni di pressione e calore scambiato	
468	C) le variazioni di pressione e calore scambiato Da cosa dipende in generale il coefficiente di resistenza?	
408	A) Dal numero di Reynolds	
	B) Dal numero di March	Α
	•	
469	C) Dal numero di Manning Il coefficiente di resistenza è la somma del:	
403	A) coefficiente d'attrito e del coefficiente di carico	
	B) coefficiente d'attrito e del coefficiente di forma	В
	C) coefficiente d'inerzia e del coefficiente di forma	
470	•	
4/0	In corrispondenza di valori elevati della velocità, un fluido che si muove attorno a un corpo	
	si distacca dalla superficie solida, tale distacco è detto: A) distacco di corda	С
	B) distacco di forma	C
	C) distacco di forma	
	Ci uistacco di vella	

471	Attraverso un tubo fluiscono 19 cm³/min di acqua. L'estremità B del tubo si trova 70 cm più in alto dell'estremità A ed è aperta e a contatto con l'atmosfera. Quanti cm³ di acqua	В
	fluiscono dal tubo in 9min?	
	A) $\Delta V = 182 \text{ cm}^3$	
	B) $\Delta V = 171 \text{ cm}^3$	
	C) $\Delta V = 150 \text{ cm}^3$	
472	Una sfera avente diametro pari a 0,50m ed un peso specifico di 13000 N*m ⁻³ , è immersa in	
	un liquido avente peso specifico che varia in funzione dell'affondamento h sotto la	
	superficie libera secondo la legge ☑ = 11000 + 1000 h.	
	Calcolare la posizione di equilibrio della sfera nel liquido.	Α
	A) h = 2,00 m	
	B) h = 3,00 m	
	C) h = 5,00 m	
473	Cos'è la resistenza al moto?	
	A) E' la componente nella direzione del moto della risultante degli sforzi normali e	
	tangenziali che il fluido esercita sulla superficie del corpo	
	B) E' la componente nella direzione inversa del moto della risultante degli sforzi	Α
	tangenziali e verticali che il fluido esercita sulla superficie del corpo	
	C) E' la componente nella direzione del moto della risultante degli sforzi diretti che il	
	fluido esercita sulla superficie del piano	
474	Un serbatoio per acqua ha il fondo orizzontale di area 10 m², calcolare il modulo S della	
4/4	spinta sul fondo quando l'acqua nel serbatoio ha una profondità di 4m sul fondo stesso	
	(peso specifico pari a 8400 N*m ⁻³).	
	A) 345000 N	С
	,	
	B) 388000 N C) 336000 N	
475	,	
4/5	Una vasca rettangolare di larghezza 5m lunghezza 6m e profondità 3m contiene acqua con peso specifico pari a 9806 N*m ⁻³ . Calcolare di quanto si alza il livello nella vasca sapendo	
	che in essa è posto un galleggiante pesante 1,47*10 ⁵ N.	
		Α
	A) 0,5 m	
	B) 0,9 m	
476	C) 0,7 m	
476	Nel moto di un fluido attorno a un corpo, vengono misurate la resistenza al moto, la	
	velocità della corrente a monte del corpo e la densità del fluido, quale delle seguenti	
	espressioni è utile per determinare il coefficiente di resistenza?	
	A) $Cr = \frac{Fr}{\frac{1}{2} \rho V^2 A}$	
	$\frac{1}{2}\rho V^2 A$	
	$P \setminus Cr = Fr$	Α
	B) $Cr = \frac{Fr}{\frac{1}{2}V^2 - A}$	
	2	
	En	
	C) $\operatorname{Cr} = \frac{Fr}{\frac{1}{2}\rho - VA}$	
	$\frac{1}{2}\rho - VA$	
477	Lo sforzo di taglio è una forza che agisce :	Α
	A) parallelamente alla superficie considerata	
	B) perpendicolarmente alla superficie considerata	
	C) verticalmente alla superficie considerata	

478	L'area frontale di un corpo immerso in un fluido in movimento:	
	A) è la superficie proiezione del corpo sul piano normale alla direzione del moto	Α
	B) è la superficie tangenziale del corpo sul piano verticale alla direzione del moto	
	C) è la superficie del corpo sul piano orizzontale alla direzione del moto	
479	L'area planimetrica di un corpo immerso in un fluido in movimento:	
	A) è la superficie proiezione del corpo su un piano ortogonale alla portanza	Α
	B) è la superficie proiezione del corpo su un piano verticale alla portanza	
	C) è la superficie proiezione del corpo su un piano orizzontale alla resistenza	
480	In un fluido in quiete la pressione è isotropa (cioè di uguale intensità in tutte le direzioni).	
	Tale circostanza discende da:	
	A) costanza della densità	В
	B) assenza di sforzi tangenziali	
	C) legge idrostatica	
481	La scabrezza sul coefficiente d'attrito in regime laminare:	
	A) Non ha alcuna influenza	Α
	B) Fa aumentare il coefficiente d'attrito	A
	C) Fa diminuire il coefficiente d'attrito	
482	Per valori di Re bassi e medi come varia il coefficiente d'attrito?	· <u> </u>
	A) Aumenta al crescere di Re	С
	B) Rimane costante al crescere di Re	C
	C) Diminuisce al crescere di Re	
483	Per valori di Re > 10 ⁴ il coefficiente di attrito:	
	A) è praticamente indipendente da Re	Α
	B) Aumenta al crescere di Re	A
	C) Diminuisce al crescere di Re	
484	Determinare la resistenza di un corpo immerso avente la risultante degli sforzi pari a 700N	
	e la sua retta d'azione forma un angolo di 35° (cos35° = 0,82) con la direzione del moto del	
	fluido.	Α
	A) Fr = 574 N	
	B) Fr = 683 N	
	C) Fr = 982 N	
485	In una condotta di acciaio lunga 20 m, scorre acqua alla temperatura di 22°C (ρ = 1000	
	kg/m³), con una portata Q pari a 2 l/s. Ipotizzando il moto puramente turbolento,	
	osservando che la perdita di carico ΔH tra le sezioni di estremità pari a 2m, determinare la	
	potenza necessaria per battere tale perdita?	В
	A) P = 42,04 kW	
	B) P = 39,24 W	
	C) P = 32,44W	
486	C) P = 32,44W Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente	
486	•	
486	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente	۸
486	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di	А
486	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento.	А
486	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW	Α
486	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW B) P = 16 kW	A
	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW B) P = 16 kW C) P = 20 kW	
	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW B) P = 16 kW C) P = 20 kW Da cosa dipende la perdita di energia che viene prodotta da un brusco allargamento?	A
	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW B) P = 16 kW C) P = 20 kW Da cosa dipende la perdita di energia che viene prodotta da un brusco allargamento? A) Dalla differenza fra le due velocità	
	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW B) P = 16 kW C) P = 20 kW Da cosa dipende la perdita di energia che viene prodotta da un brusco allargamento? A) Dalla differenza fra le due velocità B) Dalla differenza fra le due aree C) Dal prodotto delle due velocità	
487	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW B) P = 16 kW C) P = 20 kW Da cosa dipende la perdita di energia che viene prodotta da un brusco allargamento? A) Dalla differenza fra le due velocità B) Dalla differenza fra le due aree	A
487	Determinare la potenza necessaria, per trainare un serbatoio di forma sferica avente diametro pari a 1,5m completamente immerso in acqua, con un battello ad una velocità di 6 m/s essendo Fr pari a 3kN. Sapendo che il regime di moto è di tipo turbolento. A) P = 18 kW B) P = 16 kW C) P = 20 kW Da cosa dipende la perdita di energia che viene prodotta da un brusco allargamento? A) Dalla differenza fra le due velocità B) Dalla differenza fra le due aree C) Dal prodotto delle due velocità Cosa rappresenta il coefficiente d'attrito nel moto di un fluido su una lastra piana?	

400	The second of the second secon	_
489	In un contenitore d'acqua cilindrico in rotazione attorno al suo asse verticale z, la vorticità	В
	misurata in direzione z risulta pari a -66 rad/s, valore costante entro il ±0,5% in qualunque	
	punto di misura. Calcolare la velocità angolare in gpm.	
	A) $\omega = -43 \text{ K rad/s}$	
	B) $\omega = -33 \text{ K rad/s}$	
	C) $\omega = -22 \text{ K rad/s}$	
490	Determinare la pressione assoluta in una cisterna sapendo che il vacuometro collegato ad	
	essa segna 44 kPa in un luogo dove la pressione atmosferica è pari a 88 kPa.	
	A) 4,4 kPa	В
	B) 44 kPa	
	C) 52 kPa	
491	Le regioni di moto in cui le forze viscose risultanti sono trascurabili rispetto alle forze di	Α
	pressione o alle forze di inerzia sono chiamate:	
	A) regioni di moto non viscoso	
	B) regioni di moto viscoso	
	C) regioni di moto trascinato	
492	Le regioni di un campo di moto in cui le singole particelle di fluido non ruotano vengono	В
	chiamate:	
	A) regioni di moto circolare	
	B) regioni di moto irrotazionale	
	C) regioni di moto laminare	
493	Le macchine idrauliche operatrici sono indicate con il termine generico di:	Α
	A) pompe	
	B) valvole	
	C) turbine	
494	Le pompe alternative sono caratterizzate:	С
434	A) da un organo mobile soggetto a moto rotazionale ma l'energia acquisita dal fluido	
	non è prodotta dalla forza centrifuga	
	B) dal principio di conferire energia al liquido sfruttando la forza centrifuga generata	
	dall'organo mobile	
	C) dal moto alternato dei loro organi mobili	
495	I fluidi per i quali non esiste una proporzionalità semplice tra sforzo di taglio e gradiente di	В
493	velocità vengono generalmente definiti:	Б
	A) newtoniani	
	B) non newtoniani C) statici	
406	•	С
496	In un moto bidimensionale, a che cosa è uguale la differenza tra i valori che la funzione di corrente assume su due linee di flusso?	
	A) Uguale alla portata per unità di tempo tra le due linee di flusso	
	B) Uguale alla portata per unità di superficie tra le due linee di flusso	
407	C) Uguale alla portata per unità di larghezza tra le due linee di flusso	^
497	Cosa sono le equazioni costitutive?	Α
	A) Sono relazioni che esprimono le componenti del tensore degli sforzi in funzione delle	
	componenti della velocità e della pressione	
	B) Sono relazioni che esprimono le componenti della temperatura in funzione delle	
	componenti velocità e viscosità	
	C) Sono relazioni che esprimono le componenti della pressione in funzione delle	
400	componenti velocità e temperatura	
498	In quali equazioni della meccanica dei fluidi vengono usate le equazioni costitutive?	В
	A) Nell'equazione di Bernoulli	
	B) Nell'equazione di Cauchy	
	C) Nell'equazione di Darcy	

499	Per i fluidi newtoniani lo sforzo tangenziale è:	Α
433	A) proporzionale alla velocità di deformazione angolare	A
	B) proporzionale alla viscosità del fluido	
	C) proporzionale alla temperatura	
500	Per i fluidi non newtoniani il legame tra sforzo tangenziale e velocità di deformazione	В
300	angolare è:	
	A) lineare	
	B) non lineare	
	C) costante	
501	Le equazioni di Navier - Stokes valgono solo per:	Α
301	A) i fluidi newtoniani	
	B) i fluidi non newtoniani	
	C) i fluidi comprimibili	
502	Un fluido viscoelastico è un fluido che:	С
302	A) al crescere della sollecitazione diventa meno viscoso	
	B) diventa tanto più viscoso quanto più è sollecitato	
	C) ritorna alla sua forma originale dopo che lo sforzo applicato viene rimosso	
503	Un fluido pseudoplastico è un fluido che:	С
	A) diventa tanto più viscoso quanto più è sollecitato	
	B) ritorna alla sua forma originale dopo che lo sforzo applicato viene rimosso	
	C) al crescere della sollecitazione diventa meno viscoso	
504	Un fluido dilatante è un fluido che:	В
	A) ritorna alla sua forma originale dopo che lo sforzo applicato viene rimosso	
	B) diventa tanto più viscoso quanto più è sollecitato	
	C) al crescere della sollecitazione diventa meno viscoso	
505	In un fluido plastico alla Bingham è necessario:	Α
	A) superare uno sforzo di soglia perchè esso cominci a scorrere	
	B) superare uno sforzo di taglio perchè esso cominci a scivolare	
	C) superare uno sforzo di sezione perché esso cominci a scivolare	
506	Nella seguente equazione T = μ (du/dy) il termine du/dy è detto:	В
	A) viscosità cinematica	
	B) velocità di deformazione tangenziale	
	C) velocità di scorrimento	
507	Nel moto di un fluido incomprimibile newtoniano con proprietà costanti, l'equazione di	Α
	continuità e l'equazione di Navier - Stokes sono sufficienti per calcolare tutte le incognite?	
	A) Si	
	B) No	
	C) Non sempre sono sufficienti	
508	La portata di una pompa è:	Α
	A) il volume di fluido che attraversa la macchina nell'unità di tempo	
	B) il volume di fluido che attraversa la macchina in condizioni di temperatura costante	
	C) il volume di fluido che attraversa la macchina in condizioni di pressione costante	1
509	La prevalenza di una pompa è:	Α
	A) l'energia che essa può conferire ad ogni unità di peso di liquido elaborato	
	B) la quantità di calore che essa può conferire ad ogni unità di peso di liquido	
	C) la quantità di volume occupata nell'unità di tempo	
510	Nel sistema internazionale come viene espressa la prevalenza di una pompa?	В
	A) J/kW	
	B) J/N	
	C) m ³ /s	

511	Se si tratta di una pompa di tipo centrifuga l'altezza geodetica di aspirazione viene valutata come:	С
	A) la distanza orizzontale intercorrente fra la superficie del liquido nel serbatoio di	
	aspirazione ed il centro della pompa	
	B) la distanza intercorrente fra la superficie di scambio nel serbatoio di aspirazione ed il	
	centro della pompa	
	C) la distanza verticale intercorrente fra la superficie del liquido nel serbatoio di	
	aspirazione ed il centro della pompa	
512	Se si tratta di una pompa di tipo alternato l'altezza geodetica di aspirazione viene valutata	Α
	come:	
	A) la distanza verticale fra la superficie del liquido ed il punto più alto in cui esso arriva	
	nella pompa B) la distanza orizzontale fra la superficie del liquido ed il punto più basso in cui esso	
	arriva nella pompa	
	C) la distanza orizzontale fra la superficie del liquido ed il punto più alto in cui esso	
	arriva nella pompa	
513	Le perdite idrauliche derivano :	В
	A) dalla dissipazione di lavoro	
	B) dalla dissipazione di energia conseguente ad urti	
	C) dalla dissipazione di pressione	
514	Quale delle seguenti espressioni definisce il rendimento idraulico, indicando con Ht la	Α
	prevalenza teorica e con H quella effettivamente fornita dalla pompa?	
	A) ② i = H / Ht	
	B)	
	C) ② i = H - Ht	
515	Cosa si intende per peso specifico di un fluido?	Α
	A) Il peso dell'unità di volume di quel fluido	
	B) Il peso nell'unità di tempo del fluido	
F46	C) Il peso nell'unità di durata nel tempo del liquido	
516	La pressione può essere misurata a partire dal vuoto assoluto, che si pone uguale a zero; in	В
	questo caso, come viene chiamata la pressione misurata? A) Pressione relativa	
	B) Pressione assoluta	
	C) Pressione specifica	
517	Nella pratica, la pressione è quasi sempre misurata a partire dalla pressione atmosferica,	С
	assunta convenzionalmente eguale a zero; la pressione che si misura in questo caso si	
	chiama:	
	A) pressione specifica	
	B) pressione assoluta	
	C) pressione relativa	
518	La massa di fluido che attraversa nell'unità di tempo una superficie ortogonale in ogni	Α
	punto al vettore velocità in quel punto è chiamata:	
	A) portata di massa	
	B) portata offettiva	
519	C) portata effettiva Quale delle seguenti equazioni esprime la portata di massa?	Α
213	A) Qm = $\int_A \rho v dA$	^
	$r_{ij} = r_{ij} = r_{ij} = r_{ij} = r_{ij}$	
	B) $Qm = -\int_A \rho dA$	
	C) $Qm = \int_A -v dA$	
		_

 Come viene definita la portata in volume? A) La quantità di massa che attraversa una data superficie nell'unità di tempo B) Il volume di fluido che attraversa una data superficie nell'unità di tempo C) La quantità di pressione che un fluido esercita su una data superficie 521 In un processo di moto vario, la massa entrante in un volume di controllo deve essere uguale alla massa uscente? A) Solo in casi specifici B) Si sempre C) No 522 Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione della pressione 523 In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Cm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s 525 Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza?	
B) Il volume di fluido che attraversa una data superficie nell'unità di tempo C) La quantità di pressione che un fluido esercita su una data superficie In un processo di moto vario, la massa entrante in un volume di controllo deve essere uguale alla massa uscente? A) Solo in casi specifici B) Si sempre C) No 522 Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s 525 Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}	
C) La quantità di pressione che un fluido esercita su una data superficie In un processo di moto vario, la massa entrante in un volume di controllo deve essere uguale alla massa uscente? A) Solo in casi specifici B) Si sempre C) No 522 Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}	
Solo in casi specifici	
uguale alla massa uscente? A) Solo in casi specifici B) Si sempre C) No 522 Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s 525 Mel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2}	
A) Solo in casi specifici B) Si sempre C) No 522 Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione 523 In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s 525 Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2}	
B) Si sempre C) No Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione della pressione C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s 525 Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2} B) Cp = \frac{Fr}{\frac{1}{2}\rho V^2A}	
C) No Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2}	
C) No Quando viene chiamato permanente il moto attraverso un volume di controllo? A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2}	
A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione 523 In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}	
A) Quando in ciascun punto nessuna grandezza varia in funzione del peso esercitato B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione 523 In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}	
B) Quando in ciascun punto nessuna grandezza varia in funzione del tempo C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2}	
C) Quando in ciascun punto nessuna grandezza varia in funzione della pressione In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2}	
 In un sistema con un imbocco e uno sbocco, se le portate in volume all'imbocco e allo sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²).	
sbocco sono uguali, il moto è necessariamente permanente? A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s 525 Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}	
A) Si B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}	
B) No C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Sel Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = \frac{Fr}{\frac{1}{2}\rho - V^2} B) Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}	
C) Solo per volumi costanti ed alte pressioni 524 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = Fr / ½ ρ - V²	
 Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) Cp = Fr / ½ ρ - V² B) Cp = Fr / ½ ρ V²A 	
massa della sezione terminale sapendo che la densità dell'aria pari a 3 (kg/m³) la velocità pari a 10 (m/s) e l'area A pari a 8 (m²). A) Qm = 260 kg/s B) Qm = 290 kg/s C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) $Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}$ B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
pari a 10 (m/s) e l'area A pari a 8 (m²). A) $Qm = 260 \text{ kg/s}$ B) $Qm = 290 \text{ kg/s}$ C) $Qm = 240 \text{ kg/s}$ Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) $Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}$ B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
A) $Qm = 260 \text{ kg/s}$ B) $Qm = 290 \text{ kg/s}$ C) $Qm = 240 \text{ kg/s}$ 525 Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) $Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}$ B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2A}$	
B) Qm = 290 kg/s C) Qm = 240 kg/s Selection	
C) Qm = 240 kg/s Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) $Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}$ B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2A}$	
Nel moto di un fluido attorno a un corpo affusolato, come un profilo alare, vengono misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) $Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}$ B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
misurate la portanza, la velocità della corrente a monte del corpo e la densità del fluido. Come può essere determinato il coefficiente di portanza? A) $Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}$ B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
Come può essere determinato il coefficiente di portanza? A) $Cp = \frac{Fr}{\frac{1}{2}\rho - V^2}$ B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
A) Cp = $\frac{Fr}{\frac{1}{2}\rho - V^2}$ B) Cp = $\frac{Fr}{\frac{1}{2}\rho V^2 A}$	
B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
B) $Cp = \frac{Fr}{\frac{1}{2}\rho V^2 A}$	
$C) Cp = \frac{A}{\frac{1}{2} \rho V^2 F r}$	
C) $Cp = \frac{1}{1 \rho V^2 Fr}$	
526 In una condotta di un impianto di condizionamento entra una corrente con una portata A	
uguale a 0,3 (m ³ /s) e l'area pari a 30 (m ²), determinare la velocità media della corrente.	
A) V = 0,01 m/s	
B) V = 0,05 m/s	
C) V = 0,04 m/s	
Calcolare la portata in massa che si ha in una condotta di un impianto di condizionamento	
avente densità pari a 9 (kg/m³) e la portata paria a 0,3 n(m³/s).	
A) Qm = 3,1 kg/s	
B) Qm = 2,7 kg/s	
C) Qm = 3,9 kg/s	
528 Cos'è il rendimento meccanico?	
A) Il rapporto tra la potenza meccanica ceduta e quella ricevuta	
B) Il rapporto tra la potenza idraulica della macchina	
C) Il rapporto tra la potenza libera dissipata e quella ricevuta	

529	Per una turbina idraulica, un rendimento del 100% significa:	С
	A) che una parte dell'energia meccanica ricevuta dal fluido viene convertita in energia	
	meccanica per l'albero	
	B) che la metà dell'energia meccanica ricevuta dal fluido viene convertita in energia	
	meccanica per l'albero	
	C) che tutta l'energia meccanica ricevuta dal fluido viene convertita in energia	
	meccanica all'albero rotante	_
530	Il rendimento di un sistema pompa - motore è il rapporto tra:	С
	A) la potenza idraulica ceduta dalla pompa al fluido e quella elettrica	
	B) la potenza elettrica ceduta dalla pompa al fluido e quella idraulica	
	C) la potenza meccanica ceduta al fluido dalla pompa e quella elettrica che il motore	
F24	riceve dalla rete di alimentazione	Δ.
531	Un impianto idroelettrico viene alimentato da un grande serbatoio, sapendo che la potenza	Α
	della turbina è pari a 850 KW e la potenza che il fluido cede alla turbina è pari a 2500 KW determinare il rendimento della turbina.	
	A) $n_T = 34 \%$	
	B) $n_T = 32 \%$	
	C) $n_T = 45 \%$	
532	Un impianto idroelettrico viene alimentato da un grande serbatoio, sapendo che la potenza	В
	elettrica è pari a 600 KW e la potenza che il fluido cede alla turbina è pari a 2000 KW	
	determinare il rendimento del gruppo turbina - alternatore.	
	A) $n_{TA} = 40 \%$	
	B) $n_{TA} = 30 \%$	
	C) $n_{TA} = 45 \%$	
533	Una portata d'acqua di 90 l/s viene sollevata da un bacino a un cisterna mediante una	С
	pompa che assorbe una potenza elettrica pari a 80 KW, mentre l'energia che la pompa deve	
	dare al fluido che attraversa nell'unità di tempo è uguale a 40 KW. Determinare il	
	rendimento del gruppo pompa - motore.	
	A) ② _{PM} = 25 %	
	B) ② _{PM} = 30 %	
	C) ② _{PM} = 50 %	
534	Cos'è l'accelerazione tangenziale?	Α
	A) La componente dell'accelerazione nella direzione del moto	
	B) La componente del tempo nella direzione del moto	
535	C) La componente della pressione nella direzione del moto Da cosa dipende l'accelerazione tangenziale?	С
535		
	 A) Dipende dalla variazione del tempo lungo la linea di flusso B) Dipende dalla variazione della pressione lungo la linea di flusso 	
	C) Dipende dalla variazione della pressione lango la linea di flusso	
536	L'accelerazione centripeta è:	Α
	A) la componente dell'accelerazione nella direzione della normale principale	
	B) la componente del tempo nella direzione della normale secondaria	
	C) la componente della pressione nella direzione della normale principale	
537	Da cosa dipende l'accelerazione centripeta?	С
	A) Dalla temperatura	
	B) Dalla pressione	
	C) Dal raggio di curvatura	

538	Il teorema di Bernoulli in termini di energie viene espresso nella forma:	А
	A) $gz + \frac{p}{\rho} + \frac{v^2}{2} = costante$	
	F -	
	B) gz $-\frac{p}{\rho} - \frac{v^2}{2}$ = costante	
	C) gz - $\frac{\rho}{v}$ + $\frac{v^2}{2}$ = costante	
539	Il teorema di Bernoulli in termini di pressione viene espresso nella forma:	В
	A) $\rho gz - p - \rho \frac{v^2}{2}$	
	B) $\rho gz + p + \rho \frac{v^2}{2}$	
	C) $-\rho gz * p + \rho \frac{v^2}{2}$	
540	Il teorema di Bernoulli in termini di carico viene espresso nella forma:	С
	A) $z + \frac{p}{\rho g} - \frac{v^2}{2g} = costante$	
	B) $z - \frac{p}{\rho g} - \frac{v2}{2g} = costante$	
	C) $z + \frac{p}{\rho q} + \frac{v^2}{2q} = costante$	
541	Quali sono le tre ipotesi principali alla base del teorema di Bernoulli?	Α
	A) Che il liquido sia perfetto, che il fluido sia incomprimibile e che il moto sia	
	permanente in campo gravitazionale	
	B) Che il liquido sia perfetto, che il fluido sia comprimibile e che il moto sia permanente	
	in campo meccanico	
	 Che il liquido sia perfetto, che il fluido sia comprimibile e che il moto sia fisso in campo elettrico 	
542	La pressione di ristagno è pari a:	Α
	A) $\rho v^2/2$	
	B) ρ/2	
	C) ρ/2	
543	La pressione di ristagno può essere misurata tramite:	С
	A) un tubo di Mannig	
	B) un tubo di Darcy C) un tubo di Pitot	
544	I fluidi che si comportano come i fluidi newtoniani solo dopo che è stato raggiunto un certo	Α
	valore dello sforzo di taglio applicato sono detti:	()
	A) fluidi di Bingham	
	B) fluidi dilatanti	
	C) fluidi stazionari	

545	Cosa studia la dinamica dei fluidi?	Α
	A) Il moto dei fluidi, ossia delle correnti fluide	
	B) Il cambiamento di stato	
	C) La variazione di pressione	
546	In una corrente stazionaria la velocità vettoriale delle particelle di fluido in ogni punto:	В
	A) aumenta nel tempo	
	B) è costante nel tempo	
	C) diminuisce nel tempo	
547	Un fluido è viscoso quando:	В
	A) fluisce facilmente	
	B) non fluisce facilmente	
	C) scorre in maniera costante	
548	Una corrente fluida è rotazionale quando:	С
	A) il fluido si muove di solo moto traslatorio	
	B) il fluido si muove di solo moto rotazionale	
	C) una parte del fluido si muove di moto rotatorio oltre che di moto traslatorio	
549	Da quale delle seguenti formule si calcola la portata in massa?	Α
	A) $Qm = \rho A v$	
	B) $Qm = \rho A/v$	
	C) $Qm = \rho + A/v$	
550	Qual è l'unità di misura della portata in massa nel Sistema Internazionale?	Α
	A) Kg/s	
	B) m/s	
	C) g/m	
551	L'equazione z + p/2 = cost, è detta:	Α
	A) legge di Stevin	
	B) legge di Bernoulli	
	C) legge di Darcy	
552	Nell'equazione z + p/2 = cost la grandezza p/2 è detta:	В
	A) altezza massica	
	B) altezza piezometrica	
	C) altezza media	
553	Può diminuire la temperatura nel moto permanente adiabatico di un fluido incomprimibile?	В
	A) Si	
	B) No	
	C) Si solo se la pressione rimane costante	
554	E' corretto affermare che gli effetti dell'attrito sono trascurabili, nel moto permanente	Α
	adiabatico di un fluido incomprimibile, se la temperatura del fluido si mantiene costante?	
	A) Si	
	B) No	
	C) Si solo nel caso in cui la viscosità rimanga costante nel tempo	
555	La perdita di carico irreversibile è:	Α
	A) l'energia meccanica dissipata e trasformata in calore dall'unità di peso fluido nel suo	
	moto	
	B) l'energia cinetica dissipata dalle particelle di fluido quando queste vengono a	
	contatto tra loro	
	C) l'energia elettrica dissipata e trasferita a tutto il fluido	
556	La perdita di energia meccanica complessiva è pari al:	В
	A) prodotto della perdita di attrito per il calore del fluido	
	B) prodotto della perdita di carico per il peso del fluido	
	C) prodotto della perdita di viscosità per il peso del fluido	
_		

		1 .
557	Cos'è la prevalenza di una pompa?	Α
	A) L'energia che la pompa fornisce all'unità di peso di fluido	
	B) L'energia che la pompa riceve dal fluido	
	C) L'energia che la pompa riceve nell'unità di tempo	
558	Cos'è il coefficiente di ragguaglio della potenza cinetica?	С
	A) E' un coefficiente che consente di esprimere l'energia cinetica di una corrente in una	
	sezione trasversale mediante il valore della velocità relativa	
	B) E' un coefficiente che consente di esprimere l'energia meccanica di una corrente in	
	una sezione trasversale mediante il valore della velocità assoluta	
	C) E' un coefficiente che consente di esprimere l'altezza cinetica di una corrente in una	
	sezione trasversale mediante il valore della velocità media	
559	Il coefficiente di ragguaglio della potenza cinetica è:	С
	A) di poco maggiore di zero	
	B) sempre minore di uno	
	C) sempre maggiore di uno	
560	Una corrente caratterizzata da una ridotta curvatura delle traiettorie delle particelle in essa	Α
300	contenute si dice una corrente:	A
	A) gradualmente variata	
	B) totalmente variata	
	C) variata	_
561	In un fluido in quiete, non esistendo la possibilità di spostamenti fra una particella e l'altra	В
	della massa considerata, tutte le componenti tangenziali degli sforzi dovranno essere:	
	A) costanti	
	B) nulle	
	C) invariate	
562	La densità di un fluido è il rapporto tra:	С
	A) una massa M del fluido e la pressione P esercitata	
	B) il volume V del fluido e la temperatura T	
	C) una massa M del fluido e il volume V dallo stesso occupato	
563	La pompa di un impianto di sollevamento possiede una potenza pari a 40 KW, la potenza	Α
	che il fluido riceve pari a 8200 KW, determinare il rendimento meccanico della pompa.	
	A) $\eta_P = 205$	
	B) $\eta_P = 280$	
	C) $\eta_P = 320$	
564	Si dicono stazionari o permanenti quei moti per i quali, in qualunque punto dello spazio,	С
	tutte le grandezze cinematiche:	
	A) dipendono dal tempo	
	B) dipendono dalla temperatura	
	C) non dipendono dal tempo	
565	Quanti regimi di moto si possono distinguere?	Α
303	A) Due regimi di moto	^
	B) Tre regimi di moto	
F.C.C	C) Uno regimi di moto	6
566	I moti di un fluido a seconda del parametro considerato possono essere classificati in vario	С
	modo, un moto è detto tridimensionale se:	
	A) le grandezze che caratterizzano il moto dipendono da due variabili indipendenti	
	spaziali	
	B) le grandezze che caratterizzano il moto dipendono da una sola variabile spaziale	
	indipendente	
	C) le grandezze che caratterizzano il moto dipendono da tutte le variabili indipendenti	
	spaziali	

567	In generale è possibile assegnare al contorno del dominio in cui scorre un fluido due tipi di condizioni una dinamica all'altra cinematica, la condizione dinamica richiede che:	В
	A) il contorno non possa essere attraversato dal fluido	
	B) il fluido non scivoli sul contorno solido, e che quindi la velocità relativa tra contorno e	
	fluido si annulli nella superficie di contatto	
	C) la componente normale della velocità sia nulla sul contorno	
568	Quando il fluido che investe una parete è costretto a repentini cambiamenti di direzione	Α
	può avvenire la cosiddetta:	
	A) separazione della vena fluida	
	B) deformazione a contatto	
	C) dilatazione del corpo	
569	Il venturimetro è un dispositivo usato per:	Α
	A) misurare la velocità del fluido	
	B) misurare la viscosità del fluido	
	C) misurare la temperatura del fluido	
570	Un uomo riempie un secchio posato a terra con un tubo da giardino il cui sbocco è	Α
	all'altezza dei suoi fianchi. Se abbassasse lo sbocco del tubo fino all'altezza del ginocchio, il	
	tempo necessario per riempire il secchio diminuirebbe?	
	A) Si	
	B) No	
	C) Si solo se aumenta la pressione	
571	Un serbatoio pieno di acqua per una altezza di 3m ha due valvole di scarico, una posta sul	Α
	fondo e una posta subito al di sotto della superficie libera. C'è differenza tra le velocità di	
	efflusso dalle due valvole?	
	A) Si	
	B) No	
	C) No ma solo nel caso di pressioni alte	
572	Quando una luce si dice rigurgitata?	Α
	A) Quando essa è aperta in un setto posto tra due serbatoi	
	B) Quando la vena non è libera di contrarsi su tutto il contorno della luce	
	C) Quando essa avviene nell'efflusso al di sotto di una paratoia piana da un serbatoio	
	verso un canale	_
573	L'ipotesi di Taylor, o della turbolenza congelata, afferma che:	Α
	A) per tempi piccoli le caratteristiche del moto turbolento non variano	
	B) per tempi piccoli le caratteristiche del moto turbolento variano	
	C) per tempi lunghi le caratteristiche del moto turbolento non variano	
574	L'effetto della turbolenza sul moto medio può essere rappresentato per mezzo di un	С
	tensore detto:	
	A) tensore applicato	
	B) tensore di Cauchy	
	C) tensore di Reynolds	
575	Lo strato di equilibrio è caratterizzato da un moto:	A
	A) turbolento	
	B) transitorio	
F7C	C) piano	Δ.
576	La linea di fumo è:	A
	A) il luogo dei punti occupati, ad un dato istante, dalle particelle che sono passate per	
	uno stesso punto	
	B) è una linea che ha per tangente il vettore velocità in ogni punto	
	C) il luogo dei punti occupati in tempi successivi dalla stessa particella fluida	

in alto dell'estremità A ed è aperta e a contatto con l'atmosfera. Quanti cm³ di acqua fluiscono dal tubo in 3min? A) ΔV = 15 cm³ B) ΔV = 21 cm³ C) ΔV = 18 cm³ 578 La cinematica dei fluidi si occupa: A) della descrizione del moto senza analizzare le forze che lo causano B) della descrizione del moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame:		Attraverso un tubo fluiscono 7 cm ³ /min di acqua. L'estremità B del tubo si trova 70 cm più	В
fluiscono dal tubo in 3min? A) \(\text{AV} = 15 \cdot \text{cm}^3 \) B) \(\text{AV} = 21 \cdot \text{cm}^3 \) C) \(\text{AV} = 18 \cdot \text{cm}^3 \) 578 La cinematica dei fluidi si occupa: A) della descrizione del moto senza analizzare le forze che lo causano B) della descrizione delle moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A			
A) $\Delta V = 15 \text{ cm}^3$ B) $\Delta V = 21 \text{ cm}^3$ C) $\Delta V = 18 \text{ cm}^3$ 578 La cinematica dei fluidi si occupa: A) della descrizione del moto senza analizzare le forze che lo causano B) della descrizione delle moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Manning C) descrizione euleriana C) descrizione chezy 581 Con l'approccio euleriano viene preso in esame: A		· · · · · · · · · · · · · · · · · · ·	
B) $\Delta V = 21 \text{ cm}^3$ C) $\Delta V = 18 \text{ cm}^3$ 578 La cinematica dei fluidi si occupa: A) della descrizione del moto senza analizzare le forze che lo causano B) della descrizione del moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A			
C) $\Delta V = 18 \text{ cm}^3$ 578 La cinematica dei fluidi si occupa: A) della descrizione del moto senza analizzare le forze che lo causano B) della descrizione del moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Manning C) descrizione euleriana C) descrizione chezy 581 Con l'approccio euleriano viene preso in esame: A		,	
578 La cinematica dei fluidi si occupa: A) della descrizione del moto senza analizzare le forze che lo causano B) della descrizione del moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione chezy 581 Con l'approccio euleriano viene preso in esame: A		,	
A) della descrizione del moto senza analizzare le forze che lo causano B) della descrizione del moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A	578	,	Δ
B) della descrizione del moto analizzando le forze che lo causano C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A	370	·	^ _
C) della descrizione delle diverse pressioni all'interno di un fluido 579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A		,	
579 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A		,	
A) descrizione Manning B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A	579	, ·	<u> </u>
B) descrizione Chezy C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A	373		Ĭ
C) descrizione lagrangiana 580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A			
580 Quale tra i seguenti modi fondamentali descrive il moto: A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A			
A) descrizione Manning B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A	580		В
B) descrizione euleriana C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A			
C) descrizione Chezy 581 Con l'approccio euleriano viene preso in esame: A		,	
581 Con l'approccio euleriano viene preso in esame:		,	
	581		Α
A) un volume di controllo attraversato dal fluido	552	A) un volume di controllo attraversato dal fluido	``
B) la traiettoria seguita dal fluido		,	
C) un gruppo di particelle			
582 Con l'approccio lagrangiano:	582		Α
A) si seguono particelle individuali o gruppi di particelle	302		
B) viene preso in esame un volume di controllo			
C) viene preso in esame la traiettoria delle particelle			
583 Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	583		Δ
A) Linee di emissione	303	·	
B) Deformazioni lineari		,	
C) Velocità di traslazione		,	
584 Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	584	,	С
A) Deformazioni lineari	•	· · · · · · · · · · · · · · · · · · ·	
B) Velocità di traslazione			
C) Linee di flusso		C) Linee di flusso	
585 Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	585	,	В
A) Deformazioni lineari		·	
B) Traiettorie		B) Traiettorie	
C) Velocità di traslazione		C) Velocità di traslazione	
586 Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	586	Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	Α
A) Linee di tempo		A) Linee di tempo	
B) Deformazioni lineari		B) Deformazioni lineari	
C) Velocità di traslazione		C) Velocità di traslazione	
587 Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	587	Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	Α
A) Profili		A) Profili	
B) Deformazioni lineari		B) Deformazioni lineari	
C) Velocità angolare		C) Velocità angolare	
588 Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	588	Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	В
A) Deformazioni lineari			
B) Mappe di campi vettoriali		D) Market discount attacked	1
C) Velocità angolare		B) Mappe di campi vettoriali	

		1.
589	Quale dei seguenti è un modo di visualizzare e analizzare i campi di moto?	Α
	A) Isolinee	
	B) Deformazioni lineari	
	C) Velocità angolare	
590	Quale delle grandezze di seguito riportate è necessaria per descrivere la cinematica di un	Α
	campo di moto fluido?	
	A) Velocità di traslazione	
	B) Velocità cinematica	
	C) Velocità rotazionale	
591	Quale delle grandezze di seguito riportate è necessaria per descrivere la cinematica di un	В
	campo di moto fluido?	
	A) Velocità cinematica	
	B) Velocità angolare	
	C) Velocità rotazionale	
592	Nel caso di $y_0 < \varepsilon_e$, essendo y_0 l'altezza del sottostrato laminare e ε_e la scabrezza, la parete	С
	di dice:	
	A) fluidodinamicamente deformata	
	B) fluidodinamicamente liscia	
	C) fluidodinamicamente scabra	
593	La superficie, interna od esterna al fluido, in cui la pressione assoluta è uguale alla	Α
	pressione atmosferica è:	
	A) il piano dei carichi idrostatici (pci)	
	B) il piano dei carichi assoluti (pca)	
	C) il piano dei carichi relativi (pcr)	
594	La vorticità è una proprietà del moto che rappresenta la:	Α
	A) rotazionalità delle particelle di fluido	
	B) deformazione delle particelle di fluido	
	C) velocità delle particelle di fluido	
595	Una regione di un campo di moto è irrotazionale se:	С
	A) la vorticità in quella regione è alta	
	B) la vorticità in quella regione è bassa	
	C) la vorticità in quella regione è nulla	
596	Il metodo lagrangiano è quello che si usa nello studio del moto dei corpi:	Α
	A) solidi	
	B) liquidi	
	C) gassosi	
597	Con la descrizione euleriana del moto si definiscono:	Α
	A) variabili di campo in funzione dello spazio e del tempo all'interno di un volume di	
	controllo	
	B) variabili di flusso in funzione del tempo all'interno di un volume fisso	
	C) variabili angolari in funzione dello spazio all'interno di un diagramma di flusso	
598	Quale tra le seguenti è una variabile di campo?	Α
	A) Velocità	
	B) Viscosità	
	C) Entropia	
599	Quale tra le seguenti è una variabile di campo?	В
	A) Viscosità	
	B) Temperatura	
	C) Entropia	
	e, encopie	1

		T _
600	Quale tra le seguenti è una variabile di campo?	С
	A) Viscosità	
	B) Entropia	
	C) Pressione	
601	Nel sistema euleriano, un campo di moto è definito permanente quando:	Α
	A) qualunque proprietà in qualunque punto si mantiene costante nel tempo	
	B) qualunque proprietà in qualunque punto aumenta nel tempo	
	C) qualunque proprietà in qualunque punto diminuisce nel tempo	
602	Un sonda rileva pressione e temperatura in funzione del tempo in un certo punto del	Α
	campo di moto di un fluido. Questa è una misura?	
	A) Misura euleriana	
	B) Misura langrangiana	
	C) Misura Darcy	
603	Il passaggio di una corrente dallo stato di veloce allo stato lento:	В
	avviene sempre gradualmente	
	B) non avviene mai gradualmente	
	C) avviene con continuità di moto	
604	Il peso specifico di un fluido si ottiene dal rapporto tra:	
	A) il peso del fluido e il suo volume	Α
	B) il peso del fluido e la sua densità	
	C) il peso del fluido e la sua massa	
605	Un tubo di Pitot posto nella parte inferiore di un aeroplano misura, quando l'aereo è in	В
	volo, la velocità relativa rispetto al vento. Questa è una misura?	
	A) Pluviometriche	
	B) Euleriane	
	C) Lagrangiane	
606	Una linea di flusso è una:	С
	A) curva tangente in un solo punto al vettore velocità in quel punto	
	B) curva orizzontale in un solo punto al vettore velocità in quel punto	
	C) curva tangente in ogni punto al vettore velocità in quel punto	
607	La linea di flusso indica:	Α
	A) la direzione istantanea del moto in ogni suo punto	
	B) la direzione graduale del moto in un punto	
	C) la direzione angolare del moto in un punto	
608	Una traiettoria è:	С
	A) il percorso effettuato da una particella di fluido in determinate condizioni di	
	pressione	
	B) il percorso effettuato da più particelle di fluido in determinate condizioni di	
	temperature	
	C) il percorso realmente effettuato da una particella di fluido in un certo intervallo di	
	tempo	
609	Una linea di emissione o di fumo è:	Α
	A) il luogo delle particelle di fluido che sono passate in sequenza in uno stesso punto del	
	campo di moto	
	B) il luogo delle particelle di fluido che sono passate in sequenza in punti diversi del	
	campo di flusso	
	C) il luogo delle particelle di fluido che sono passate in sequenza diversa è sparsa nel	
	campo di flusso	

610	Se il moto è permanente, le linee di emissione e le linee di flusso:	В
010	A) non coincidono	Ь
	B) coincidono	
	C) sono parallele	
611	Una linea di tempo è:	Α
011	A) il luogo delle posizioni raggiunte in un certo istante dall'insieme di particelle di fluido	Α
	che in un istante precedente stavano su una linea	
	B) il luogo delle particelle di fluido che sono passate in sequenza in uno stesso punto del	
	campo di moto	
	 C) il luogo delle particelle di fluido che sono passate in sequenza in punti diversi del campo di flusso 	
612	Nel moto traslazionale:	С
012	A) una particella di fluido ruota attorno ad un asse passante per il suo baricentro	C
	B) una particella di fluido si allunga o si accorcia in una certa direzione	
	C) una particella di fluido si sposta da un punto ad un altro	
613	Nel moto rotazionale:	A
012	A) una particella di fluido ruota attorno ad un asse passante per il suo baricentro	^
	B) una particella di fluido ruota attorno ad un asse passante per il suo baricentro B) una particella di fluido si allunga o si accorcia in una certa direzione	
	C) una particella di fluido si sposta da un punto ad un altro	
614	Nelle deformazioni lineari:	В
614	A) una particella di fluido ruota attorno ad un asse passante per il suo baricentro	D
	B) una particella di fluido si allunga o si accorcia in una certa direzione	
615	C) una particella di fluido si sposta da un punto ad un altro Nelle deformazioni angolari:	Λ
013		Α
	A) una particella di fluido si deforma in modo che due linee, passanti per il suo	
	baricentro e inizialmente perpendicolari, in un istante successivo non siano più perpendicolari tra loro	
	B) una particella di fluido ruota attorno ad un asse passante per il suo baricentroC) una particella di fluido si allunga o si accorcia in una certa direzione	
616	La parte di interfaccia tra liquido ed aeriforme è detta:	A
010	A) pelo libero	A
	B) contorno bagnato	
	C) superficie di aderenza	
617	Un contenitore d'acqua cilindrico ruota in senso antiorario attorno al suo asse verticale,	Α
017	sapendo che ω = 30 rad/s. Calcolare la vorticità delle particelle di liquido nel contenitore.	^
	A) $\Omega = 60 \text{ K rad/s}$	
	B) $\Omega = 75 \text{ K rad/s}$	
	C) $\Omega = 80 \text{ K rad/s}$	
618	In un contenitore d'acqua cilindrico in rotazione attorno al suo asse verticale z, la vorticità	Α
020	misurata in direzione z risulta pari a -12 rad/s, valore costante entro il ±0,5% in qualunque	,,
	punto di misura. Calcolare la velocità angolare in gpm.	
	A) $\omega = -6$ K rad/s	
	B) $\omega = -9 \text{ K rad/s}$	
	C) $\omega = -14 \text{ K rad/s}$	
619	In un contenitore d'acqua cilindrico in rotazione attorno al suo asse verticale z, la vorticità	С
	misurata in direzione z risulta pari a -22 rad/s, valore costante entro il ±0,5% in qualunque	
	punto di misura. Calcolare la velocità angolare in gpm.	
	A) $\omega = -13$ K rad/s	
	B) $\omega = -9 \text{ K rad/s}$	
	C) $\omega = -11 \text{ K rad/s}$	
		•

620	In un contenitore d'acqua cilindrico in rotazione attorno al suo asse verticale z, la vorticità misurata in direzione z risulta pari a -55,4 rad/s, valore costante entro il $\pm 0,5\%$ in qualunque	В
	punto di misura, sapendo che la velocità angolare è negativa qual è il verso di rotazione?	
	A) Antiorario	
	B) Orario	
	C) Non ruota	
621	Un contenitore cilindrico parzialmente pieno d'olio avente raggio uguale a 1m, in	С
	corrispondenza del bordo possiede una velocità di 2m/s in direzione antioraria, si determini	
	la velocità angolare.	
	A) $\omega = 0.2 \text{ rad/s}$	
	B) $\omega = 3 \text{ rad/s}$	
	C) $\omega = 2 \text{ rad/s}$	
622	Un contenitore cilindrico parzialmente pieno d'olio avente raggio uguale a 1m, in	С
	corrispondenza del bordo possiede una velocità di 2m/s in direzione antioraria, si determini	
	la velocità angolare sapendo inoltre che la velocità angolare è ω = 8 rad/s.	
	A) $\Omega = 20 \text{ K rad/s}$	
	B) $\Omega = 14 \text{ K rad/s}$	
	C) $\Omega = 16 \text{ K rad/s}$	
623	La vorticità è una misura:	Α
	A) della rotazionalità di una particella di fluido	
	B) della perpendicolarità di una particella di fluido	
	C) della uniformità di una particella di fluido	
624	Se la particella ruota, la sua vorticità è:	В
	A) nulla	
	B) non nulla	
	C) sempre maggiore	
625	Matematicamente, il vettore vorticità è:	С
	A) la metà del vettore velocità angolare	
	B) un terzo del vettore velocità angolare	
	C) il doppio del vettore velocità angolare	
626	Se la vorticità è nulla, il moto si dice:	В
	A) rotazionale	
	B) irrotazionale	
	C) angolare	
627	Il moto si dice irrotazionale quando la vorticità è:	Α
	A) nulla	
	B) costante nel tempo	
	C) il doppio della velocità permanente	
628	E' corretto affermare che: il teorema del trasporto di Reynolds serve per trasformare i	С
	principi di conservazione dalla loro forma naturale, valida per un volume di controllo, alla	
	forma valida per un sistema?	
	A) Si è corretto	
	B) Non sempre è valido	
	C) E' vero l'opposto	
629	E' corretto affermare che: il teorema del trasporto di Reynolds si può applicare solo a	В
	volumi di controllo che non si derformano?	
	A) Non sempre è valido	
	B) No, si può applicare a qualunque volume di controllo	
	C) Si è corretto	

		1
630	E' corretto affermare che: il teorema del trasporto di Reynolds si può applicare a campi di	Α
	moto sia permanenti sia vari?	
	A) Si è corretto	
	B) No è valido solo per moti permanenti	
	C) No è valido solo per moti vari	
631	E' corretto affermare che: il teorema del trasporto di Reynolds si può applicare a quantità	Α
	sia scalari sia vettoriali?	
	A) Si è corretto	
	B) No è applicabile solo a quantità scalari	
	C) No è applicabile solo a quantità vettoriali	
632	La densità relativa è definita come:	В
	A) il rapporto tra la viscosità di una sostanza e quella dell'acqua a 4°C	
	B) il rapporto tra la densità di una sostanza e quella dell'acqua a 4°C	
	C) il rapporto tra la temperatura di una sostanza e quella dell'acqua a 4°C	
633	Il rapporto tra la densità di una sostanza e quella dell'acqua a 4°C è chiamato:	Α
	A) densità relativa	
	B) densità assoluta	
	C) densità libera	
634	La pressione di saturazione è:	Α
	A) la pressione alla quale una sostanza pura cambia fase	
	B) la pressione alla quale una sostanza passa da liquido a solido	
	C) la pressione alla quale una sostanza pura non cambia fase	
635	La pressione alla quale una sostanza pura cambia fase è chiamata:	С
	A) pressione di dilatazione	
	B) pressione osmotica	
	C) pressione di saturazione	
636	Nei processi di cambiamento di fase tra le fasi liquida e di vapore di una sostanza pura, la	С
	pressione di saturazione è comunemente chiamata:	
	A) tensione superficiale	
	B) tensione ammissibile	
627	C) tensione di vapore	Δ
637	Da quale coefficiente viene rappresentato il comportamento di un fluido sottoposto, a temperatura costante ed a variazioni di pressione?	Α
	A) Dal coefficiente di comprimibilità	
	B) Dal coefficiente di comprimibilità B) Dal coefficiente di saturazione	
	C) Dal coefficiente angolare	
638	Da quale coefficiente viene rappresentato il comportamento di un fluido sottoposto, a	С
038	pressione costante ed a variazioni di temperatura?	
	A) Dal coefficiente di dilatazione angolare	
	B) Dal coefficiente di saturazione	
	C) Dal coefficiente di dilatazione cubica	
639	Il numero di Mach è il rapporto tra:	Α
000	A) la velocità del fluido e la velocità del suono nelle stesse condizioni	``
	B) la velocità di passaggio del fluido e il diametro dell'ugello	
	C) la velocità angolare del fluido e la velocità del suono	
640	La viscosità di un fluido è:	С
	A) una misura della resistenza che esso oppone alle forze che agiscono sulla parete del	
	contenitore che lo contiene	
	B) una misura della resistenza che esso oppone alla forza di gravità	
	C) una misura della resistenza che esso oppone alle forze che tendono a deformarlo con	
	continuità	
		1

		-
641	Il rapporto tra la viscosità dinamica e densità è chiamato:	Α
	A) viscosità cinematica	
	B) viscosità dinamica	
	C) viscosità idraulica	
642	Un fluido che occupa un volume di 32 l pesa 280 N in un luogo in cui l'accelerazione di	С
	gravità vale 9,80 m/s². Calcolare la massa del fluido.	
	A) $m = 29.7 \text{ kg}$	
	B) m = 32,5 kg	
	C) $m = 28,6 \text{ kg}$	
643	Un fluido che occupa un volume di 32 l pesa 280 N in un luogo in cui l'accelerazione di	В
	gravità vale 9,80 m/s². Calcolare la densità del fluido, sapendo che m = 28,6 kg.	
	A) $\rho = 886 \text{ kg/m}^3$	
	B) $\rho = 893 \text{ kg/m}^3$	
	C) $\rho = 877 \text{ kg/m}^3$	
644	Se la pressione di una sostanza viene aumentata mentre essa sta bollendo, la temperatura	Α
	di ebollizione:	
	A) aumenta	
	B) diminuisce	
	C) rimane costante	
645	Se la pressione di una sostanza viene diminuita mentre essa sta bollendo, la temperatura di	В
	ebollizione:	
	A) rimane costante	
	B) diminuisce	
	C) aumenta	
646	Quando in qualche punto di un volume liquido la pressione scende al di sotto della tensione	С
	di vapore si formano delle bolle di vapore. Tale fenomeno viene chiamato:	
1	di vapore si formano delle bolle di vapore. Tale renomeno viene cinamato.	
	A) erosione	
	· ·	
	A) erosione	
647	A) erosione B) abrasione	A
647	A) erosione B) abrasione C) cavitazione	A
647	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di:	A
647	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione	A
647	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce:	A
	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione	
	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore	
	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma	
648	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono	A
	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono:	
648	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo	A
648	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare	A
648	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare B) quei fluidi per i quali la velocità di deformazione angolare è direttamente	A
648	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare B) quei fluidi per i quali la velocità di deformazione angolare è direttamente proporzionale allo sforzo tangenziale, per qualunque valore di esso	A
648	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare B) quei fluidi per i quali la velocità di deformazione angolare è direttamente proporzionale allo sforzo tangenziale, per qualunque valore di esso C) quei fluidi per i quali la velocità di trazione è inversamente proporzionale allo sforzo	A
648	A) erosione B) abrasione C) cavitazione Il fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare B) quei fluidi per i quali la velocità di deformazione angolare è direttamente proporzionale allo sforzo tangenziale, per qualunque valore di esso C) quei fluidi per i quali la velocità di trazione è inversamente proporzionale allo sforzo angolare	A B
648	A) erosione B) abrasione C) cavitazione II fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare B) quei fluidi per i quali la velocità di deformazione angolare è direttamente proporzionale allo sforzo tangenziale, per qualunque valore di esso C) quei fluidi per i quali la velocità di trazione è inversamente proporzionale allo sforzo angolare L'acqua è un fluido newtoniano?	A
648	A) erosione B) abrasione C) cavitazione II fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare B) quei fluidi per i quali la velocità di deformazione angolare è direttamente proporzionale allo sforzo tangenziale, per qualunque valore di esso C) quei fluidi per i quali la velocità di trazione è inversamente proporzionale allo sforzo angolare L'acqua è un fluido newtoniano? A) No	A B
648	A) erosione B) abrasione C) cavitazione II fenomeno della cavitazione può dar luogo a fenomeni di: A) erosione B) vaporizzazione C) liquefazione La tensione di vapore costituisce: A) la proprietà fisica dei liquidi che ne determina la possibilità di passare allo stato di vapore B) la proprietà chimica dei liquidi che ne determina la forma C) la proprietà meccanica che i liquidi possiedono I fluidi newtoniani sono: A) quei fluidi per i quali la velocità tangenziale è inversamente proporzionale allo sforzo angolare B) quei fluidi per i quali la velocità di deformazione angolare è direttamente proporzionale allo sforzo tangenziale, per qualunque valore di esso C) quei fluidi per i quali la velocità di trazione è inversamente proporzionale allo sforzo angolare L'acqua è un fluido newtoniano?	A B

		T
651	La benzina è un fluido newtoniano?	С
	A) Solo in determinate condizioni di temperatura	
	B) No	
	C) Si	
652	Il petrolio è un fluido newtoniano?	В
	A) No	
	B) Si	
	C) Solo in determinate condizioni di temperatura	
653	All'aumentare della temperatura la viscosità dinamica dei liquidi :	Α
	A) diminuisce	
	B) rimane costante	
	C) aumenta	
654	Nei liquidi all'aumentare della temperatura la viscosità dinamica:	Α
	A) diminuisce	
	B) aumenta	
	C) rimane costante	
655	Nei liquidi al diminuire della temperatura la viscosità dinamica:	Α
	A) aumenta	
	B) rimane costante	
	C) diminuisce	
656	Qualsiasi fluido al variare della pressione cui è soggetto modifica:	Α
	A) il proprio volume	
	B) il proprio stato	
	C) la proprio forma	
657	Il campo di moto di un fluido è completamente definito quando sia nota la funzione:	В
	A) $v = v/(x, y, z, t)$	
	B) $v = v(x, y, z, t)$	
	C) $v = -v(x, y, z, t)$	
658	La risalita capillare è maggiore in un tubo:	Α
	A) di piccolo diametro	
	B) di grande diametro	
	C) di medio diametro	
659	La risalita capillare è minore in un tubo:	В
	A) di piccolo diametro	
	B) di grande diametro	
	C) di medio diametro	
660	Dato un volume di fluido V in date condizioni di pressione, ad una variazione di pressione	Α
	elementare dp, supposta uniforme sulla superficie di contorno del volume, corrisponde una	
	variazione di volume dV data da: $dV = -V/\epsilon dp$, in cui il termine ϵ è detto:	
	A) modulo di elasticità di volume	
	B) modulo di deformazione	
	C) modulo di comprimibilità	
661	Nel sistema internazionale qual è l'unità di misura del modulo di elasticità di volume?	Α
	A) Pascal	
	B) °C	
	C) °K	
662	Cosa studia l'idrostatica?	А
	A) Il comportamento dei fluidi in quiete	
	B) Il comportamento dei fluido sotto pressione	
	C) Il comportamento dei fluidi ad elevati valori di temperatura	
	·	•

Un contenitore d'acqua della capacità di 6,0 l si riempie in 3 s. Calcolare la portata di volume, in l/min. A) Q = 140 l/min B) Q = 120 l/min C) Q = 2150 l/min Un contenitore d'acqua della capacità di 2,0 l si riempie in 2,85 s. Calcolare la portata di volume, in l/min. A) Q = 42,1 l/min B) Q = 45,7 l/min C) Q = 53,1 l/min Un fluido che occupa un volume di 0,040 m³ pesa 280 N in un luogo in cui l'accelerazione di gravità vale 9,80 m ½. Calcolare la densità del fluido, sapendo che m = 4 kg. A) ρ = 100 kg/m³ B) ρ = 250 kg/m³ C) ρ = 320 kg/m³ C) ρ = 320 kg/m³ C) ρ = 320 kg/m³ C) Q = 53,1 l/min Q = 48 l/min Q = 28 l/min Q = 95,06 atm D) P = 12,6 atm D) P = 12,6 atm D) P = 10,6 atm D) P = 10,6 atm D) P = 2,6 atm D) P = 2,4 l/min D) Q = 24 l/min D) Q = 24 l/min D) Q = 24 l/min D) Q = 27 l/min D) Q = 27 l/min D) Q = 28 l/min D) Q = 38 l/min D) Q = 28 l/min D) P = 10,6 atm D) P = 10,8 atm D			
A) Q = 140 l/min B) Q = 120 l/min C) Q = 150 l/min C) Q = 150 l/min C) Q = 150 l/min D) Q = 42,7 l/min B) Q = 42,7 l/min B) Q = 45,7 l/min C) Q = 53,1 l/min B) Q = 45,7 l/min C) Q = 53,1 l/min B) Q = 45,7 l/min C) Q = 53,1 l/min B) Q = 45,7 l/min C) Q = 53,1 l/min B) Q = 45,7 l/min C) Q = 53,1 l/min B) Q = 46,7 l/min C) Q = 53,1 l/min B) Q = 48,7 l/min C) Q = 53,1 l/min B) Q = 48,1 l/min B) Q = 24,8 l/min C) Q = 320 kg/m² C) ρ = 320 kg/m² B) P = 500 kg/m² C) Q = 52 l/min B) Q = 48 l/min C) Q = 52 l/min B) Q = 48 l/min C) Q = 52 l/min B) P = 9,68 atm C) P = 10,6 atm B) P = 9,68 atm C) P = 10,6 atm C) Q = 32 l/min B) Q = 24 l/min C) Q = 32 l/min C	663	Un contenitore d'acqua della capacità di 6,0 l si riempie in 3 s. Calcolare la portata di	В
B Q = 120 /min C Q = 150 /min C Q = 45.7 /min D Q = 42.1 /min D Q = 45.7 /min D Q = 45.7 /min D Q = 45.7 /min D Q = 53.1 /min D Q = 53.0 kg/m³ D D Q D D D D D D D		volume, in I/min.	
B Q = 120 /min C Q = 150 /min C Q = 45.7 /min D Q = 42.1 /min D Q = 45.7 /min D Q = 45.7 /min D Q = 45.7 /min D Q = 53.1 /min D Q = 53.0 kg/m³ D D Q D D D D D D D		A) Q = 140 l/min	
C Q = 150 /min		·	
On contenitore d'acqua della capacità di 2,01 si riempie in 2,85 s. Calcolare la portata di volume, in l/min. A Q = 42,1 l/min B Q = 45,7 l/min C Q = 53,1 l/min D Thildido che occupa un volume di 0,040 m³ pesa 280 N in un luogo in cui l'accelerazione di gravità vale 9,80 m/s². Calcolare la densità del fluido, sapendo che m = 4 kg. A P = 100 kg/m³ B P = 250 kg/m³ C P = 320 kg/m³ C Q = 52 l/min G Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l'acqua (d = 1000) di una condotta fino ad un serbatolo posto su un palazzo alto 100m? A P = 12,6 atm B P = 9,68 atm C P = 10,6 atm D C C S S C D C C C C D C C C C D C C C C D C C C C D C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C D C C C C C C C D C C C C C C C D C C C		,	
volume, in l/min. A) Q = 42,1 l/min B) Q = 45,7 l/min C) Q = 53,1 l/min A) Q = 100 kg/m³ B) ρ = 100 kg/m³ A lead of littlide of the occupa un volume di 0,040 m³ pesa 280 N in un luogo in cui l'accelerazione di gravità vale 9,80 m/s². Calcolare la densità del fluido, sapendo che m = 4 kg. A) ρ = 100 kg/m³ B p = 250 kg/m³ C) ρ = 320 kg/m³ B Coloume, in l/min. A) Q = 66 l/min B) Q = 48 l/min B Q = 48 l/min C) Q = 52 l/min B Q = 48 l/min Gof Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l'acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B P = 9,68 atm C) P = 10,6 atm B P = 9,68 atm C) P = 10,6 atm B Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min Gof Q = 22 l/min B Volume in longo in cui l'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B ω = 6 rad/s C) ω = 8 rad/s C Reg sm² Colo la la densità di un fluido che occupa un volume di 201 e pesa 140N, sapendo che m = 10 k	664	· · · · · · · · · · · · · · · · · · ·	Α
A) Q = 42,1 l/min C) Q = 53,1 l/min C) Q = 52,0 kg/m³ C) ρ = 320 kg/m³ C) ρ = 250 kg/m³ C) ρ = 250 kg/m³ C) ρ = 320 kg/m³ C) ρ = 320 kg/m³ C) ρ = 48 l/min C) Q = 66 l/min B) Q = 48 l/min C) Q = 52 l/min C) Q = 36 l/min B) P = 9,68 atm C) P = 10,6 atm C) P = 36 l/min B) Q = 24 l/min C) Q = 32 l/min C) Q = 37 l/min C) Q = 37 l/min C) Q = 38 l/min C) Q = 38 l/min C) Q = 38 l/min C) Q = 37 l/min C) Q = 32 l/min C) Q = 32 l/min C) Q = 30 l/min Di un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s C) ω = 8 rad/s C1 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C1 Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua e pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,04 B) dr = 0,02			, ,
B Q = 45,7 /min C Q = 53,1 /min C Q = 52 /min C Q			
C) Q = 53,1 l/min Un fluido che occupa un volume di 0,040 m³ pesa 280 N in un luogo in cui l'accelerazione di gravità vale 9,80 m/s². Calcolare la densità del fluido, sapendo che m = 4 kg. A ρ = 100 kg/m³ D = 250 kg/m³ D = 250 kg/m³ D = 250 kg/m³ D = 250 kg/m³ D = 248 l/min D = 48 l/min D = 248 l/mi			
 665 Un fluido che occupa un volume di 0,040 m³ pesa 280 N in un luogo in cui l'accelerazione di gravità vale 9,80 m/s². Calcolare la densità del fluido, sapendo che m = 4 kg. A) ρ = 100 kg/m³ B) ρ = 250 kg/m³ C) ρ = 320 kg/m³ C) ρ = 320 kg/m³ B) Q = 48 l/min C) Q = 52 l/min 667 Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l'acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm B Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min In un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min C) Q = 38 rad/s C) ω = 8 rad/s C) α = 8 rad/s C) β g m² C1 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 kg. A) ρ = 500 kg/m³ B) ρ = 500 kg/m³ C) ρ = 350 kg/m³ C2 Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 		•	
gravità vale 9,80 m/s². Calcolare la densità del fluido, sapendo che m = 4 kg. A) ρ = 100 kg/m³ B) ρ = 250 kg/m³ C) ρ = 320 kg/m³ C) ρ = 320 kg/m³ B) Q = 66 l/min B) Q = 48 l/min C) Q = 52 l/min 667 Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l' acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm B Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min 669 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s 670 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m² C B) Kg m C) Kg s m² 671 Calcolare la densità di un fluido che occupa un volume di 201 e pesa 140N, sapendo che m = 10 kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,02	665		Λ
A) ρ = 100 kg/m³ B) ρ = 250 kg/m³ C) ρ = 320 kg/m³ C) θ = 300 kg/m³ B) Q = 66 l/min B) Q = 48 l/min C) Q = 52 l/min G67 Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l' acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min G69 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s C) α (C) ω = 8 rad/s C) α (C) ω	003		^
B) ρ = 250 kg/m³ C) ρ = 320 kg/m³ C) Q = 66 [/min B) Q = 48 [/min C) Q = 52 [/min B) Q = 48 [/min C) Q = 52 [/min B) Q = 48 [/min C) Q = 52 [/min B) Q = 48 [/min C) Q = 52 [/min B) Q = 24 [/min C) Q = 52 [/min B) P = 9.68 atm C) P = 12.6 atm B) P = 9.68 atm C) P = 10.6 atm C) P =			
C) ρ = 320 kg/m³ 666 Un contenitore d'acqua della capacità di 8,0 l si riempie in 10 s. Calcolare la portata di volume, in l/min. A) Q = 66 l/min B) Q = 48 l/min C) Q = 52 l/min 667 Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l' acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm 668 Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min 669 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s C) Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s [*] m³ B) kg m C) kg s m² 670 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ A) dr = 0,04 B) dr = 0,02		. ,	
G66			
volume, in I/min. A) Q = 66 I/min B) Q = 48 I/min C) Q = 52 I/min B 667 Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l'acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? B A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm 668 Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in I/min. A) Q = 36 I/min B A) Q = 36 I/min C) Q = 32 I/min A C C) Q = 32 I/min C) Q = 32 I/min A A 669 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A A A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s C) ω = 8 rad/s C C) ω = 8 rad/s C) ω = 8 rad/s C C G70 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A A A) μ = 500 kg/m³ C C C B) kg m C) μ = 500 kg/m³ C C C) μ = 350 kg/m³ C D C C)		, ,	_
A) Q = 66 l/min B) Q = 48 l/min C) Q = 52 l/min 667 Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l' acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm C) P = 10,6 atm B) Q = 24 l/min C) Q = 36 l/min C) Q = 32 l/min C) D = 8 rad/s C) R = 8	666		В
B Q = 48 l/min C Q = 52 l/min		• •	
C) Q=52 l/min 667 Quale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l' acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm 668 Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s 670 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m² B) Kg m C) Kg s m² 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ 672 Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,04 B) dr = 0,04 B) dr = 0,02		•	
German Guale pressione è indispensabile affinché una pompa idraulica riesca a sollevare l'acqua (d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm B P = 9,68 atm C) P = 10,6 atm B P = 10,6 atm C) P = 10,6 atm B C = 24 /min C) Q = 36 /min B Q = 24 /min C) Q = 32 /min C /min C) Q = 32 /min C		•	
(d = 1000) di una condotta fino ad un serbatoio posto su un palazzo alto 100m? A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm 668 Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. B A) Q = 36 l/min B) Q = 24 l/min 669 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s 670 Quale tra le seguenti è l'unità di misura corretta per la viscosità? C A) Kg s² m² C B) Kg m C) Kg s m² 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A A) ρ = 500 kg/m³ C C) ρ = 350 kg/m³ B 672 Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. B A) dr = 0,04 B) dr = 0,02		· · · · · · · · · · · · · · · · · · ·	
A) P = 12,6 atm B) P = 9,68 atm C) P = 10,6 atm B) Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min C) Q = 32 l/min C) Un un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s C) αuale tra le seguenti è l'unità di misura corretta per la viscosità? A) kg s² m² C) kg s m² C) kg s m² C1 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C1 Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02	667		В
B) P = 9,68 atm C) P = 10,6 atm C) P = 10,6 atm C) P = 10,6 atm 668 Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min C) Q = 32 l/min 669 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s C) ω = 8 rad/s C) ω = 8 rad/s C) κg s m² 670 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) κg s² m² C) κg s m² C) κg s m² C Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C) α Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02			
C) P = 10,6 atm 668 Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min 669 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s 670 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m⁴ B) Kg m C) Kg s m² 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C) Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		A) P = 12,6 atm	
 Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di volume, in l/min. A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min B) In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m² Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,04 B) dr = 0,02 		,	
 volume, in I/min. A) Q = 36 I/min B) Q = 24 I/min C) Q = 32 I/min C) Q = 32 I/min B) Q = 24 I/min C) Q = 32 I/min C) Q = 32 I/min B) Un un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s C) ω = 8 rad/s A) Kg s² m⁴ B) Kg m C) Kg s m² C Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C) Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 		C) P = 10,6 atm	
A) Q = 36 l/min B) Q = 24 l/min C) Q = 32 l/min 669 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s 670 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m⁴ B) Kg m C) Kg s m² 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,04 B) dr = 0,02	668	Un contenitore d'acqua della capacità di 16,0 l si riempie in 40 s. Calcolare la portata di	В
 B) Q = 24 l/min C) Q = 32 l/min In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m² B) Kg m C) Kg s m² Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 		volume, in I/min.	
C) Q = 32 l/min In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s A) Kg s² m²4 B) Kg m C) Kg s m² Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,04 B) dr = 0,02		A) Q = 36 l/min	
 In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s 670 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m⁴ B) Kg m C) Kg s m² 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ 672 Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 		B) Q = 24 l/min	
velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m⁴ C) Kg s m² C1 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C1 Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		C) Q = 32 l/min	
liquido guardando dall'alto si muove in direzione antioraria. A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s A) Kg s² m² 4 B) Kg m C) Kg s m² 2 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ 672 Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02	669	In un contenitore cilindrico con raggio pari a 8 m, in parte pieno d'acqua, calcolare la	Α
 A) ω = 2 rad/s B) ω = 6 rad/s C) ω = 8 rad/s Guale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m² C) Kg s m² C) Kg s m² Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 		velocità angolare sapendo che in corrispondenza del bordo, la velocità è pari a 16 m/s, ed il	
B) ω = 6 rad/s C) ω = 8 rad/s Cl ω = 8 rad/s A) Kg s² m² A) Kg s m² C) Kg s m² Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ B) α = 700 kg/m³ C) α = 10 kg. Calcolare la densità relativa di un corpo che in aria pesa 500N, mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		liquido guardando dall'alto si muove in direzione antioraria.	
C) ω = 8 rad/s Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m² B) Kg m C) Kg s m² Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		A) $\omega = 2 \text{ rad/s}$	
 Quale tra le seguenti è l'unità di misura corretta per la viscosità? A) Kg s² m²4 B) Kg m C) Kg s m²2 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ C) ρ = 350 kg/m³ C) αlcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 		B) $\omega = 6 \text{ rad/s}$	
 A) Kg s² m²4 B) Kg m C) Kg s m²2 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ 672 Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 		C) $\omega = 8 \text{ rad/s}$	
 A) Kg s² m²4 B) Kg m C) Kg s m²2 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ 672 Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 	670	Quale tra le seguenti è l'unità di misura corretta per la viscosità?	
C) Kg s m ⁻² 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, "mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		A) Kg s ² m ⁻⁴	С
C) Kg s m ⁻² 671 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, "mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		B) Kg m	
 Calcolare la densità di un fluido che occupa un volume di 20l e pesa 140N, sapendo che m = 10 Kg. A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 			
m = 10 Kg. A) $\rho = 500 \text{ kg/m}^3$ B) $\rho = 700 \text{ kg/m}^3$ C) $\rho = 350 \text{ kg/m}^3$ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02	674		Δ.
 A) ρ = 500 kg/m³ B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 	6/1		А
 B) ρ = 700 kg/m³ C) ρ = 350 kg/m³ 672 Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02 			
C) ρ = 350 kg/m³ Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		. ,	
Calcolare la densità relativa di un corpo che in aria pesa 500N, ,mentre quando è immerso in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02		, ,	
in acqua pesa 460N, sapendo che la densità del corpo è pari a 20 kg/m³ e la densità dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02			
dell'acqua è pari a 100 kg/m³. A) dr = 0,04 B) dr = 0,02	672		В
A) dr = 0,04 B) dr = 0,02			
B) dr = 0,02			
C) $dr = 0.05$		•	
		C) $dr = 0.05$	

		T
673	Un diaframma è costituito da:	Α
	A) un piatto inserito all'interno della tubazione e nel quale è praticato un orifizio a	
	spigolo vivo	
	B) un graduale restringimento della sezione di tubazione fino alla sezione di efflusso	
	C) un convergente seguito da un tratto a sezione ristretta e da un divergente piuttosto	
	lungo	
674	Un tubo di Venturi è costituito da:	В
	A) un piatto inserito all'interno della tubazione e nel quale è praticato un orifizio a	
	spigolo vivo	
	B) un convergente seguito da un tratto a sezione ristretta e da un divergente piuttosto	
	lungo	
	C) un graduale restringimento della sezione di tubazione fino alla sezione di efflusso	
675	In idraulica si dice luce:	Α
	A) un'apertura praticata sulla parete o sul fondo di un recipiente, e dalla quale	
	fuoriesce del liquido	
	B) la quota del livello liquido all'interno di un tubo	
	C) l'estremità di un corpo immerso nell'acqua	_
676	Quando in idraulica la luce si dice a battente?	В
	A) Se la superficie libera passa attraverso la luce Contratta il provincio del libera passa attraverso la luce	
	B) Se tutto il contorno è al di sotto della superficie libera	
677	C) Se una parte del contorno è al di sopra della superficie libera	6
677	Quando in idraulica la luce si dice a stramazzo?	С
	A) Se tutto il contorno è al di sotto della superficie libera D) Se una parte del contorno è al di sopra della superficie libera O) Se una parte del contorno è al di sopra della superficie libera O) Se una parte del contorno è al di sopra della superficie libera O) Se una parte del contorno è al di sopra della superficie libera O) Se una parte del contorno è al di sopra della superficie libera	
	B) Se una parte del contorno è al di sopra della superficie libera	
678	C) Se la superficie libera passa attraverso la luce In idraulica la luce si dice rigurgitata quando:	Α
0/8	A) essa è aperta in un setto posto tra due serbatoi	A
	B) la vena non è libera di contrarsi su tutto il contorno della luce	
	C) la superficie libera passa attraverso la luce	
679	In idraulica la luce si dice a contrazione parziale quando:	С
	A) la superficie libera passa attraverso la luce	
	B) essa è aperta in un setto posto tra due serbatoi	
	C) la vena non è libera di contrarsi su tutto il contorno della luce	
680	Si chiama sifone:	Α
	A) una tubazione che collega due serbatoi passando al di sopra del piano dei carichi	
	iniziali di quello posto a quota maggiore	
	B) un dispositivo di cui sono generalmente dotate le tubazioni da cui effluisce liquido	
	C) un graduale restringimento della sezione di tubazione, fino alla sezione di efflusso	
681	Sapendo che la potenza di una turbina in un impianto idroelettrico è pari a 1200 KW,	В
	mentre la potenza che il fluido cede alla turbina è pari a 1800 KW, calcolare il rendimento	
	della turbina, supponendo che le perdite di carico siano trascurabili nelle tubazioni.	
	A) $n_T = 72 \%$	
	B) $n_T = 67 \%$	
	c) $n_T = 78 \%$	
682	Una corrente d'aria attraversa in moto permanente un convergente, calcolare la portata in	Α
	massa della sezione terminale sapendo che la densità dell'aria pari a 7 (kg/m³) la velocità	
	pari a 23 (m/s) e l'area A pari a 9 (m ²).	
	A) Qm = 1449 (kg/s)	
	B) Qm = 1949 (kg/s)	
	C) Qm = 2249 (kg/s)	
<u> </u>	-1 -3 ·· - == ·· V·Q(-1)	<u> </u>

683	In una condotta di un impianto di condizionamento entra una corrente con una portata uguale a 0,8 (m³/s) e l'area pari a 160 (m²), determinare la velocità media della corrente.	В
	A) V = 0,002 m/s	
	B) V = 0,005 m/s	
	C) V = 0,007 m/s	
684	Un contenitore cilindrico, di raggio R in rotazione attorno al suo asse verticale z, è	A
	parzialmente pieno d'olio. In corrispondenza del bordo, sapendo che ω = 12 rad/s, calcolare	
	la componente vorticità in direzione z di una qualunque particella di fluido.	
	A) $\Omega = 24 \text{ K rad/s}$	
	B) $\Omega = 12 \text{ K rad/s}$	
	C) $\Omega = 16 \text{ K rad/s}$	
685	Un tubo rigido orizzontale viene attraversato da una portata di 5cc/s, quanto vale la	Α
	pressione trasmurale sapendo che Pint è pari a 23Pa e Patm è pari a 32 Pa?	
	A) Pt = -9 Pa	
	B) Pt = -11 Pa	
	C) Pt = 16 Pa	
686	Calcolare la prevalenza manometrica di una pompa che trasporta una portata d'acqua Q =	Α
	0,04 m ³ /s, da un bacino posto a 3m sotto il livello della pompa ad un altro posto a 20m	
	sopra, sapendo che il diametro delle tubazioni è d = 100mm e ΔH_t = 5 m/s ed Hg =50.	
	A) $Hm = 55 \text{ m/s}$	
	B) Hm = 75 m/s	
	C) Hm = 65 m/s	
687	Determinare la pressione pi all'interno di una goccia d'acqua del raggio R=0.025 mm alla	С
	temperatura di 293 K, quando la pressione esterna è pari a quella normale atmosferica:	
	pe=105 Pa, sapendo che Δp = 5200 Pa.	
	A) pi = 5450 Pa	
	B) pi = 5605 Pa	
	C) pi = 5305 Pa	_
688	Un tubo rigido orizzontale viene attraversato da una portata pari a 5cc/s la sua sezione è di	Α
	1cm ² , restringendosi per un breve tratto fino ad una sezione di 1mm ² . Nel primo tratto	
	calcolare quanto vale la velocità del liquido.	
	A) $v_1 = 5 \text{ cm/s}$ B) $v_1 = 8 \text{ cm/s}$	
	C) $v_1 = 7$ cm/s	
689	Un tubo rigido orizzontale viene attraversato da una portata pari a 5cc/s la sua sezione è di	В
083	1cm ² , restringendosi per un breve tratto fino ad una sezione di 1mm ² . Nel secondo tratto	ט
	calcolare quanto vale la velocità del liquido.	
	A) $v_2 = 8 \text{ m/s}$	
	B) $v_2 = 5 \text{ m/s}$	
	C) $v_2 = 7 \text{ m/s}$	
690	Un tubo rigido orizzontale viene attraversato da una portata di 5cc/s, quanto vale la	Α
	pressione trasmurale sapendo che Pint è pari a 28Pa e Patm è pari a 36 Pa?	
	A) Pt = -8 Pa	
	B) Pt = 9 Pa	
	C) Pt = -12 Pa	
691	Attraverso un tubo fluiscono 5 cm ³ /min di acqua. L'estremità B del tubo si trova 50 cm più	Α
	in alto dell'estremità A ed è aperta e a contatto con l'atmosfera. Quanti cm³ di acqua	
	fluiscono dal tubo in 3min?	
	A) $\Delta V = 15 \text{ cm}^3$	
	B) $\Delta V = 20 \text{ cm}^3$	
	C) $\Delta V = 18 \text{ cm}^3$	

692	Attraverso un tubo fluiscono 59 cm³/s di acqua. L'estremità B del tubo si trova 50 cm più in alto dell'estremità A ed è aperta e a contatto con l'atmosfera. La sezione del tubo in A vale 2 cm². Quanto vale la velocità media dell'acqua in A? A) v _a = 40,9 cm/s	С
	B) $v_a = 35,2 \text{ cm/s}$	
	C) v _a = 29,5 cm/s	
693	Attraverso un tubo fluiscono 72 (cm³/s) di acqua. L'estremità B del tubo si trova 50 cm più in alto dell'estremità A ed è aperta e a contatto con l'atmosfera. La sezione del tubo in B vale 3 cm². Quanto vale la velocità media dell'acqua in B?	С
	A) $v_b = 19 \text{ m/s}$	
	B) $v_b = 21 \text{ m/s}$	
	C) v _b = 24 m/s	
694	Un filetto di fumo coincide con una linea di corrente:	С
034	A) in ogni tipo di moto	
	B) quando il fluido è viscoso	
	C) quando il moto è permanente	
695	Il moto di un fluido è detto laminare se:	Α
	A) i filetti di liquido scorrono l'uno sopra l'altro senza mescolarsi	
	B) i filetti di liquido scorrono l'uno sopra l'altro mescolandosi	
	C) le particelle di liquido scorrono e urtano violentemente l'una con l'altra	
	mescolandosi	
696	La transizione fra regime laminare e turbolento avviene tipicamente quando la velocità	В
	media nel condotto:	
	A) uguaglia la velocità criticaB) supera la velocità critica	
	B) supera la velocità critica C) fa diminuire la velocità critica	
697	Il valore della velocità critica in un condotto si raggiunge tipicamente:	С
	A) quando il numero di Reynolds vale circa 2000	
	B) quando il numero di Reynolds vale circa 1100	
	C) quando il numero di Reynolds vale circa 1000	
698	Calcolare la velocità media dell'acqua in un tubo di diametro 40cm ² , se la portata vale	В
	9(cm ³ /s) ed il rapporto $\pi d^2 = 700$ cm ² , quanto vale la velocità media dell'acqua?	
	A) $v = 0.09 \text{ cm/s}$	
	B) v = 0,05 cm/s	
600	C) v = 0,07 cm/s	6
699	Le macchine idrauliche sono costituite da quanti elementi fondamentali?	С
	A) Tre B) Quattro	
	C) Due	
700	Quanto vale il raggio idraulico in un tubo che ha un lato pari a 0,20m ed avente sezione	В
	quadrata?	
	A) 0,08 m	
	B) 0,05 m	
	C) 0,10 m	
701	In una tubazione di ferro del diametro di 60 mm, lunga 300 m, defluisce acqua a 20°C, con	С
	una portata di 0,7 l/s, essendo Re > 2 300. Il regime di moto è:	
	A) laminare	
	B) lievemente laminare C) turbolento	
	C) tarboletito	

702	Il rapporto tra velocità della corrente e celerità delle perturbazioni elementari è detto	Α
	numero di Froude; se risulta F > 1 la corrente è:	
	A) veloce	
	B) lenta	
	C) in stato critico	
703	Il rapporto tra velocità della corrente e celerità delle perturbazioni elementari è detto	С
	numero di Froude; se risulta F < 1 la corrente è:	
	A) in stato critico	
	B) veloce	
	C) lenta	
704	Il rapporto tra velocità della corrente e celerità delle perturbazioni elementari è detto	Α
	numero di Froude; se risulta F = 1 la corrente è:	
	A) in stato critico	
	B) lenta	
	C) veloce	
705	Data la portata, e individuata l'altezza di moto uniforme h ₀ , di una corrente a superficie	Α
	libera, se risulta $h_0 > h_c$ dove he corrisponde all'altezza critica si dice che il moto uniforme è:	
	A) in corrente lenta	
	B) in corrente veloce	
	C) in corrente critica	
706	La sezione del getto che fuoriesce da un serbatoio attraverso un breve tubo circolare	
	applicato sulla parete interna del serbatoio:	
	A) è pari a 0,5 volte la sezione del tubo	Α
	B) è pari alla sezione del tubo	
	C) è pari a 0,61 volte la sezione del tubo	
707	Per una data portata, si può valutare la pendenza che, nel moto uniforme, corrisponde	Α
	all'altezza critica: tale pendenza è detta i_c , se risulta: $i < i_c$ si dice che l'alveo è:	
	A) a debole pendenza	
	B) a forte pendenza	
	C) a pendenza uniforme	
708	Come viene genericamente chiamato un foro aperto nella parte o nel fondo di un	Α
	recipiente?	
	A) Luce	
	B) Raggio	
	C) Traiettoria	
709	Indicare come sarà il regime di moto in una tubazione orizzontale del diametro di 80 mm	С
	sapendo che il numero di Reynolds è pari a 10,3 nella quale scorre in atmosfera un fluido	
	avente viscosità μ pari a 0,77 Pa·s.	
	A) turbolento	
	B) puramente turbolento	
	C) laminare	
710	Per una data portata, si può valutare la pendenza che, nel moto uniforme, corrisponde	В
	all'altezza critica: tale pendenza è detta i_c , se risulta: $i > i_c$ si dice che l'alveo è:	
	A) a debole pendenza	
	B) a forte pendenza	
	C) a pendenza uniforme	
711	Secondo il teorema di Bernoulli nel moto permanente di un fluido perfetto pesante	Α
	incomprimibile l'energia meccanica specifica :	
	A) si mantiene costante lungo ogni traiettoria	
	B) aumenta lungo ogni traiettoria	
	C) diminuisce lungo ogni traiettoria	

712	Quanto misura la velocità media di un fluido, presente in un impianto di condizionamento, in una condotta di acciaio rettangolare di 200 mm × 300 mm viene canalizzata aria calda,	В
	con una portata di 0,5 m ³ /s.	
	A) 15200 m/s	
	B) 8,33 m/s	
	C) 8 cm	
713	Assunto un piano di riferimento orizzontale di quota convenzionale z = 0, siano	Α
	rispettivamente Ha e Hb < Ha le quote degli specchi d'acqua in A e in B; il dislivello	
	Y = Ha - Hb viene detto:	
	A) salto disponibile	
	B) salto termico	
	C) salto adiabatico	
714	In un impianto di condizionamento, in una condotta di acciaio rettangolare di 200 mm × 300	Α
	mm viene canalizzata aria calda ad una pressione di 125 kPa sapendo che il numero di	
	Reynolds è pari a 122000, il regime di moto è:	
	A) turbolento	
	B) lievemente laminare	
	C) laminare	
715	Le macchine motrici sono:	Α
	A) quelle che ricevono energia dalla corrente idrica	
	B) quelle che cedono energia alla corrente	
	C) quelle che cedono calore alla corrente	
716	Le macchina operatrici sono:	С
	A) quelle che cedono calore alla corrente	
	B) quelle che ricevono energia dalla corrente idrica	
	C) quelle che cedono energia alla corrente	
717	Il regime di moto in una tubazione orizzontale, del diametro di 50 mm, all'interno della	В
	quale defluisce un fluido con densità pari a 1200 kg/m ³ e viscosità μ = 0,27 Pa·s, con una	
	velocità media di 3,5 m/s, è:	
	A) turbolento	
	B) laminare	
	C) puramente turbolento	
718	Il dislivello ΔH fra i carichi totali nelle sezioni di ingresso e di uscita della turbina viene	Α
	chiamato:	
	A) salto utile	
	B) salto termico	
	C) salto potenziale	
719	Il salto utile rappresenta:	Α
	A) la differenza fra l'energia meccanica che l'unità di peso del liquido possiede prima	
	d'entrare nella macchina e quella che le rimane quando ne esce	
	B) la differenza fra l'energia cinetica che l'unità di peso del liquido possiede prima	
	d'entrare nella macchina e quella che le rimane quando ne esce	
	C) la differenza fra l'energia potenziale che l'unità di peso del liquido possiede prima	
	d'entrare nella macchina e quella che le rimane quando ne esce	
720	La prevalenza totale rappresenta:	В
	A) il calore che la pompa deve effettivamente cedere all'unità di peso del liquido che la	
	attraversa	
	B) l'energia che la pompa deve effettivamente cedere all'unità di peso del liquido che la	
	attraversa	
	C) la portata che la pompa deve effettivamente trasportare	

721	Si dice irrotazionale il campo di moto di un fluido, quando:	Α
	A) in ogni suo punto sia nullo il rotore del vettore v	
	B) in ogni suo punto sia maggiore di 3 il rotore del vettore v	
	C) in ogni suo punto sia minore di 2 il rotore del vettore	
722	L'utilizzazione della potenza idraulica dei corsi d'acqua viene sovente condotta a mezzo di	Α
	un impianto, ciò viene detto:	
	A) con derivazione in pressione	
	B) con derivazione in caduta	
	C) con derivazione in condotta forzata	
723	Indicare come sarà il regime di moto in una tubazione di rame, nella quale defluisce	С
	ammoniaca liquida alla temperatura di -20 °C , con una portata di 0,05 kg/s, essendo il	
	numero di Reynolds pari a 54000.	
	A) laminare	
	B) lievemente laminare	
	C) turbolento	
724	Calcolare la portata in massa che si ha in una condotta di un impianto di condizionamento	Α
	avente densità pari a 12 (kg/m³) e la portata paria a 0,6 n(m³/s).	
	A) Qm = 7,2 kg/s	
	B) Qm = 6,7 kg/s	
	C) Qm = 5,9 kg/s	
725	Dicesi altezza critica di una corrente a pelo libero di assegnata portata Q, quell'altezza K per	Α
	cui risulta:	
	A) minima l'energia specifica E rispetto al fondo dell'alveo	
	B) massima l'energia specifica E rispetto al fondo dell'alveo	
	C) costante l'energia specifica E rispetto al fondo dell'alveo	
726	Lo stato critico di una corrente a pelo libero è quella particolare condizione in cui essa viene	С
	a trovarsi quando:	
	A) la sua altezza assume il valore minimo	
	B) la sua altezza assume il valore massimo	
	C) la sua altezza assume il valore critico	
727	La velocità critica di una corrente a pelo libero è la velocità media corrispondente allo:	Α
	A) stato critico	
	B) stato di bassa pressione	
	C) stato di alta pressione	
728	Come viene definita la lunghezza equivalente usata per esprimere le perdite localizzate in	Α
	una corrente in pressione?	
	A) La lunghezza del tronco di tubazione che causa una perdita continua uguale a quella	
	localizzata	
	B) La lunghezza del tronco di tubazione che causa una perdita continua pari alla metà di	
	quella localizzata	
	C) La lunghezza del tronco di tubazione che causa una perdita continua pari al triplo di	
	quella localizzata	
729	In caso di perdite localizzate, arrotondare l'imbocco di una tubazione che effetto ha sul	В
	coefficiente della corrispondente perdita?	-
	A) Un effetto trascurabile sulla riduzione della corrispondente perdita	
	B) Un effetto molto significativo sulla riduzione della corrispondente perdita	
	C) Un effetto poco significativo sulla riduzione della corrispondente perdita	
	o, on effects poes significative sails frauzione della corrispondente perulta	<u> </u>

730	Perché in un allargamento graduale di sezione (divergente) la perdita è maggiore che in un	А
	restringimento graduale (convergente)? A) Le perdite nei divergenti sono maggiori di quelle nei convergenti perché nei primi i	
	fenomeni di distacco di vena sono più accentuati	
	B) Le perdite nei convergenti sono maggiori di quelle nei divergenti perché nei primi i	
	fenomeni di distacco di vena sono più accentuati	
	C) Le perdite nei divergenti sono minori di quelle nei convergenti perche nei primi i	
	fenomeni di distacco di vena sono meno accentuati	
731	Nel moto di un fluido reale, intervengono due caratteristiche: la viscosità e l'agitazione	Α
	turbolenta. La viscosità da luogo ad azioni:	
	A) tangenziale tra le particelle	
	B) verticali tra le particelle	
722	C) ortogonali tra le particelle	В
732	Nel moto di un fluido reale, intervengono due caratteristiche: la viscosità e l'agitazione turbolenta. L'agitazione turbolenta dà luogo:	В
	A) ad azioni tangenziale tra le particelle	
	B) ad urti e a scambio di quantità di moto	
	C) ad azioni ortogonali tra le particelle	
733	E' corretto affermare che in un impianto di sollevamento da un serbatoio a quota inferiore	Α
	a uno a quota superiore, se le perdite sono trascurabili, la prevalenza della pompa è pari al	
	dislivello geodetico tra le superfici libere dei serbatoi?	
	A) Si	
	B) No	
	C) Solo ad alte pressioni	
734	Il punto di funzionamento di un impianto di sollevamento è:	Α
	A) il punto in cui si intersecano la curva dell'impianto e la curva caratteristica della	
	pompa	
	B) il punto in cui la curva dell'impianto è parallela alla curva caratteristica della pompa	
	C) il punto in cui la curva dell'impianto è perpendicolare alla curva caratteristica della	
735	pompa Il moto in fluidi reali si può svolgere in presenza delle sole azioni tangenziali: in tal caso si	Α
/33	parla di moto in:	A
	A) regime laminare	
	B) regime turbolento	
	C) regime irregolare	
736	Consideriamo due strati di fluido di area A, a distanza infinitesima dn, e in moto l'uno con	Α
	velocità v e l'altro con velocità v + dv. La forza F che si esercita tra i due strati è data da:	
	A) $F = A \mu dv / dn$	
	B) $F = A \mu dv * dn$	
	C) $F = A \mu dv - dn$	
737	Quando una superficie ha una forma semplice, per calcolare la spinta conviene ricorrere al:	Α
	A) prisma delle pressioni	
	B) triangolo delle pressioni	
	C) esagono delle pressioni	6
738	La densità dell'olio di oliva, alla temperatura di 20°C, è ρ = 0,925 g/cm ³ . Determinare il peso di 12,5 dm ³ di olio.	С
	A) P = 133,4 N	
	B) P = 133,4 N	
	C) P = 113,4 N	
	C) 1 - 113,4 IN	<u> </u>

		ı
739	Per le condotte metalliche degli acquedotti, una classica formula in uso fin dal 1800 è quella	С
	di:	
	A) Reynolds	
	B) Colebrook	
	C) Darcy	
740	La prevalenza manometrica è uguale alla prevalenza totale solo se:	С
	A) v _m * v _v	
	B) v_m / v_v	
	C) $v_m = v_v$	
741	Una barca presenta un foro dello scafo che è stato chiuso con un tappo circolare avente	С
	diametro D = 10cm. Sapendo che il tappo si trova ad una profondità di 0,85 m e che la	
	densità di massa dell'acqua di mare è ρ = 1.03 g/cm ³ , determinare la forza che lo scafo	
	deve applicare sul tappo per mantenerlo in equilibrio, sapendo che una delle due basi del	
	tappo è a contatto con l'atmosfera.	
	A) F = 85.5 N	
	B) F = 77.5 N	
	C) F = 67.5 N	
742	La prevalenza manometrica è uguale alla prevalenza totale solo se:	Α
	A) le condotte di aspirazione e di mandata hanno lo stesso diametro	
	B) le condotte di aspirazione e di mandata hanno diverso diametro	
	C) le condotte di aspirazione hanno diametro maggiore di quelle di mandata	
743	Una corrente lenta per diventare veloce deve:	В
	A) aumentare la viscosità	
	B) aumentare la velocità	
	C) diminuire la velocità	
744	L'aria è il più comune fluido:	Α
	A) comprimibile	
	B) incomprimibile	
	C) viscoso	
745	Determinare la densità di massa di un corpo avente volume V = 0.753 m ³ e massa m = 584	В
	kg è immerso in acqua di mare ρ = 1.03 g/cm ³ .	
	A) $\rho = 789 \text{ kg/m}^3$	
	B) $\rho = 776 \text{ kg/m}^3$	
	C) $\rho = 799 \text{ kg/m}^3$	
746	Un corpo avente volume V = 0.753 m ³ e massa m = 584 kg è immerso in acqua di mare ρ =	Α
	1.03 g/cm ³ la densità di massa del corpo è pari a ρ = 776 kg/m ³ , dire se il corpo galleggia	
	oppure no.	
	A) Il corpo galleggia	
	B) Il corpo non galleggia	
	C) Nessuna delle risposte è corretta	
747	Un corpo avente volume V = 0.753 m 3 e massa m = 584 kg è immerso in acqua di mare $ ho$ =	Α
	1.03 g/cm 3 la densità di massa del corpo è pari a ρ = 776 kg/m 3 , qual è il volume della parte	
	del corpo che emerge dall'acqua?	
	A) $Ve = 0.186 \text{ m}^3$	
	B) Ve =0,356 m^3	
	C) Ve =0,226 m^3	

748	L'equazione fondamentale dell'idrostatica viene espressa dalla:	۸
/48		Α
	A) $z + \frac{p}{} = cost$	
	B) $z * \frac{p}{} = cost$	
	p .	
	C) $z - \frac{p}{} = cost$	
749	Nell'equazione fondamentale dell'idrostatica il rapporto $rac{p}{}$ prende il nome di:	В
	A) quota specifica	
	B) altezza piezometrica	
	C) altezza apparente	
750	In un fluido in quiete la quota piezometrica è:	В
/30	A) variabile	Б
	B) costante	
	C) relativa al fluido	
751	Un gruppo di sommozzatori deve recuperare una statua avente massa pari a m= 70.0 kg in	Α
/31	fondo al mare (ρ_a = 1030 kg/m ³). Il suo volume è V = 2.60*10 ⁴ cm ³ . Quale forza è necessario	A
	esercitare mediante una corda verticale per sollevare la statua?	
	A) F = 424.0 N	
	B) F = 452.0 N	
	C) F = 488.0 N	
752	Come varia la pressione all'interno del fluido?	^
/52	A) Varia linearmente con la guota all'interno della massa fluida	Α
	B) Varia orizzontalmente con il variare della viscosità del fluido	
	,	
753	C) Aumenta all'aumentare della quantità di fluido	С
/55	Se si fa riferimento alle pressioni assolute, i fluidi non possono sopportare pressioni: A) positive	C
	B) costanti	
	C) negative	
754	Fluidi di diverso peso specifico e non miscibili tra di loro, quando siano posti in quiete nello	В
/54	stesso recipiente, si dispongono a:	
	A) strati verticali	
	B) strati orizzontali	
	C) strati sovrapposti	
755	Le superfici isocore in idrostatica sono:	Α
	A) orizzontali	, ,
	B) verticali	
	C) ortogonali	
756	La pressione esercitata, su ognuno dei quattro pneumatici di un'automobile è pari a	Α
	p = 260kPa = 2.6*10 ⁵ Pa. Se ciascun pneumatico ha una impronta di 200 cm ² , determinare il	
	peso dell'automobile.	
	A) $P = 2.08*10^4 \text{ N}$	
	B) P = 2.28*10 ⁴ N	
	C) $P = 2.38*10^4 \text{ N}$	
757	La pressione esercitata, su ognuno dei quattro pneumatici di un'automobile è pari a	С
	p = 260kPa = 2.6*10 ⁵ Pa. Se ciascun pneumatico ha una impronta di 200 cm ² , determinare la	
	massa dell'automobile.	
	A) m = 2015 kg	
	B) m = 2330 kg	
	C) m = 2120 kg	

758	La misura immediata della pressione si esegue con:	Α
	A) manometro metallico	
	B) manometro a spirale	
	C) monometro di Darcy	
759	Un sottomarino è immobilizzato sul fondo del mare, alla profondità di 100m. Il portello di	Α
	emergenza ha forma rettangolare, con lati $l_1 = 50$ cm e $l_2 = 60$ cm. La pressione all'interno del	
	sommergibile è pari a 1.00 atm. Assegnando all'acqua di mare la densità ρ = 1.03 g/cm ³ ,	
	calcolare la forza minima necessaria per aprire il portello.	
	A) $F_{min} = 3.031*10^5 \text{ N}$	
	B) $F_{min} = 3.101*10^5 \text{ N}$ C) $F_{min} = 3.131*10^5 \text{ N}$	
760		D
760	Alla parete di un recipiente contenente un liquido, in corrispondenza della superficie libera, agiscono delle forze di attrazione molecolare tra parete e liquido, dette:	В
	A) forze di repulsione B) forze di adesione	
	C) forze di adesione	
761	,	^
761	Per sollevare l'acqua di una condotta fino ad una cisterna posto su un palazzo alto 130 metri, quale pressione è necessaria alla pompa idraulica?	Α
	A) P = 12.6 atm	
	B) P = 22.6 atm	
	C) P = 17.6 atm	
762	In una tubazione del diametro di 200mm, che si stacca da un serbatoio con imbocco ben	Α
702	raccordato, sono presenti due saracinesche, una valvola a fuso e una valvola a farfalla. La	
	tubazione sbocca in un serbatoio a livello costante. Quale deve essere la lunghezza minima	
	della tubazione perché possa essere considerata una lunga condotta se Le ≤ 0,02 L, λ = 0,02	
	s e K_T = 2?	
	A) L _{min} = 500 m	
	B) L _{min} = 470 m	
	C) L _{min} = 665 m	
763	Una tubazione può essere considerata una lunga condotta se ha una lunghezza tale da dar	Α
	luogo:	
	A) a perdite continue nettamente maggiori di quelle localizzate	
	B) a perdite continue nettamente minori di quelle localizzate	
	C) a perdite continue di poco minori di quelle localizzate	
764	I fluidi in quiete non subiscono alcuno:	Α
	A) spostamento relativo	
	B) abbassamento di pressione	
	C) sforzo normale	
765	La spinta su una superficie piana è un:	Α
	A) vettore diretto normalmente alla superficie	
	B) vettore indiretto	
	C) vettore diretto normalmente all'altezza	
766	Il manometro semplice non indica la pressione del punto cui è collegato, ma consente di:	В
	A) individuare l'altezza della colonna	
	B) individuare il p.c.i (piano carichi idrostatici)	
	C) individuare la differenza di pressione	
767	51g di benzina occupa un volume pari a 75 cm³ indicare quale sarà la densità relativa della	В
	benzina.	
	A) 0,98 g/cm ³	
	B) 0,68 g/cm ³	
	C) 0,93 g/cm ³	

760	Colle densità del manunio à neri e 42 C e/em³ celebrar il relime e connete delle stacce in	D
768	Se la densità del mercurio è pari a 13,6 g/cm³, calcolare il volume occupato dallo stesso in 300g.	В
	A) $V = 27.1 \text{ cm}^3$	
	B) $V = 22,1 \text{ cm}^3$	
	C) $V = 25,1 \text{ cm}^3$	
769	Un liquido è incomprimibile se:	С
703	A) la massa volumetrica varia con la pressione	C
	B) la massa volumetrica varia con la viscosità	
	C) la massa volumetrica non varia con la pressione	
770	Il manometro differenziale è un apparecchio che misura:	В
//0	A) la differenza di volume tra due punti di fluidi diversi	Ь
	B) la differenza di pressione tra due punti di fluidi diversi	
	C) la differenza di viscosità tra due punti di fluidi diversi	
771	Le forze di superficie comprendono:	В
//1	A) tutte le forze esterne che si esercitano a distanza su tutte le particelle del sistema	Ь
	B) tutte le forze che vengono esercitate su una parte qualsiasi del sistema continuo	
	attraverso la sua superficie di contorno	
	C) tutte le forze esterne che si esercitano a piccola distanza su una parte delle particelle	
	del sistema	
772	Il manometro ad aria è uno strumento che permette di misurare:	Α
,,_	A) una differenza modesta tra due p.c.i. (piano carichi idrostatici) di quota molto	, ,
	elevata	
	B) la differenza di pressione tra due punti di fluidi diversi	
	C) la differenza di quota piezometrica tra due punti di fluidi uguali	
773	Calcolare la spinta idrostatica B di una profilo di metallo che pesa 40 Kg e volume pari a	Α
	5dm³, sospeso da una corda all'interno di un contenitore pieno di olio con densità relativa	
	pari a 0,76.	
	A) Spinta idrostatica B = 3,8 kg	
	B) Spinta idrostatica B = 4,2 kg	
	C) Spinta idrostatica B = 4,8 kg	
774	Un profilo di metallo che pesa 40 Kg e volume pari a 5dm³ è sospeso da una corda	С
	all'interno di un contenitore pieno di olio con densità relativa pari a 0,76, calcolare la	
	tensione T della corda.	
	A) $T = 46.2 \text{ kg}$	
	B) T = 38,2 kg	
	C) $T = 36.2 \text{ kg}$	
775	Calcolando il rapporto tra la massa di un fluido e il suo volume si ottiene:	Α
	A) la densità	
	B) il peso specifico	
	C) la viscosità	
776	Il volume specifico di un fluido è pari:	
	A) al doppio del suo peso specifico	В
	B) all'inverso del suo peso specifico	
	C) alla metà del suo peso specifico	
777	Una corrente liquida che fluisce su una parete solida esercita verso la parete un'azione di	_
	sfregamento alla quale si dà il nome di:	Α
	A) attrito esterno	
	B) attrito interno	
	C) viscosità	

778	Si consideri un fluido in quiete contenuto in un recipiente. La pressione idrostatica in un punto che si trova a quota h rispetto al pelo libero del fluido:	А
	A) è direttamente proporzionale ad h	
	B) è inversamente proporzionale ad h	
	C) è pari alla metà di h	
779	Da quale legge deriva il principio dei vasi comunicanti?	
	A) dalla legge di Stevino	Α
	B) dall'equazione di continuità	
	C) dal teorema di Bernoulli	
780	Si definisce portata di una corrente fluida che scorre all'interno di un tubo:	
	A) la quantità totale di fluido che attraversa una sezione del tubo	В
	B) il volume di fluido che nell'unità di tempo attraversa una sezione del tubo,	
	perpendicolare alla direzione del movimento del fluido	
	C) il peso del fluido che nell'unità di tempo attraversa una sezione del tubo,	
	perpendicolare alla direzione del movimento del fluido	
781	Si consideri un liquido in quiete contenuto in un recipiente. La pressione idrostatica sul	
	fondo del recipiente dipende:	С
	A) dalla sezione orizzontale del liquido	
	B) dalla forma del recipiente	
	C) dalla densità del liquido e dalla sua altezza	
782	Si consideri un fluido in quiete di densità d, che forma una colonna verticale di altezza h	
	all'interno del recipiente che lo contiene. Con quale delle seguenti formule si calcola la	С
	pressione agente sul fondo del recipiente?	
	A) $p = dgh^2$	
	B) $p = d^2g h$	
	C) p = d g h	
783	Quale tra le seguenti è l' unità di misura corretta per il volume specifico?	
	A) N/m ³	С
	B) m^2/N	
	C) m ³ /N	
784	In un fluido perfetto il moto delle sue particelle avviene:	
	A) senza perdite di energia	Α
	B) con perdite di energia costanti	
	C) con perdite di energia variabili	
785	Se la velocità non è funzione del tempo:	В
	A) il moto si dice vario	
	B) il moto si dice permanente	
	C) il moto si dice accelerato	
786	Le forze esercitate su un fluido dalle pareti del recipiente che lo contiene sono:	В
	A) forze di massa	
	B) forze di superficie	
	C) forze di volume	
787	Cosa si ottiene dal rapporto tra una forza e una superficie?	
	A) Uno sforzo	۸
	B) Un volume	Α
	C) Una massa	

A) la velocità è funzione del tempo C) solo in alcuni casi la velocità è funzione del tempo C) solo in alcuni casi la velocità è funzione del tempo C) solo in alcuni casi la velocità è funzione del tempo 789 Calcolare il rendimento di una turbina in un impianto idroelettrico, sapendo che la potenza della turbina è pari a 1400W, mentre la potenza che il fluido cede alla turbina è pari a 2200W. Supporre che le perdite di carico siano trascurabili nelle tubazioni. A) n; = 68% C) n; = 74% B) n; = 68% C) n; = 74% 790 Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della: A) viscosità B) potenza dissipata C) pressione 791 La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pistico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante C) Fluido pistico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido pesudopilastico C) Fluido pesudopilas	788	In un moto vario:	Α
B) la velocità non è mai funzione del tempo C) solo in alcuni casi la velocità è funzione del tempo Calcolare il rendimento di una turbina in un impianto idroelettrico, sapendo che la potenza della turbina è pari a 1400W, mentre la potenza che il fluido cede alla turbina è pari a 1200W. Supporre che le perdite di carico siano trascurabili nelle tubazioni. A) n. = 64% B) n. = 64% C) n. = 74% 790 Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della: A) viscosità B) potenza dissipata C) pressione Causuperficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido piastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido piastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido piastico alla Bingham 795 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido piastico alla Bingham 796 Se il fluido espectico C) Fluido pasudoplastico C) Fluido pasudoplastico C) Fluido piastico alla di minuita a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante B) Fluido comportamento dipendente dal tempo? A) Fluido tixotropico C) Fluido pasudoplastico C) Fluido pasu	700		_ ^
C) solo in alcuni casi la velocità è funzione del tempo Calcolare il rendimento di una turbina in un impianto idroelettrico, sapendo che la potenza della turbina è pari a 1400W, mentre la potenza che il fluido cede alla turbina è pari a 2200W. Supporre che le perdite di carico siano trascurabili nelle tubazioni. A) In; = 68% B) In; = 68% C) In; = 74% 790 Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della: A) viscosità B) potenza dissipata C) pressione 191 La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido tixotropico B) Fluido piastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido peseudoplastico C) Fluido peseudoplastico C) Fluido peseudoplastico C) Fluido peseudoplastico C) Fluido reopectico C) Fluido peseudoplastico C) Fluido reopectico C) Fluido dilatante B) Fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo ad avere valori elevatissimi C) rimane costante nel tempo fon ad avere valori elevatissimi C) rimane costante nel tempo fon ad avere valori elevatissimi C) rimane costante nel tempo fon ad avere valori elevatissimi C) rimane costante nel tempo fon ad avere valori elevatissimi C) rimane costante nel tempo fon ad avere valori elevatissimi C) rimane costante nel tempo fon ad avere valori elevatissimi C) rimane costante nel tempo fon ad avere valori elevatissimi C) rimane costante nel temp		·	
789 Calcolare il rendimento di una turbina in un impianto idroelettrico, sapendo che la potenza della turbina è pari a 1400W, mentre la potenza che il fluido cede alla turbina è pari a 2200W. Supporre che le perdite di carico siano trascurabili nelle tubazioni. A)		•	
della turbina è pari a 1400W, mentre la potenza che il fluido cede alla turbina è pari a 2200W. Supporre che le perdite di carico siano trascurabili nelle tubazioni. A) n _T = 64% B) n _T = 68% C) n _T = 74% 790 Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della: A) viscosità B) potenza dissipata C) pressione 791 La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido pistico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pistico alla Bingham 795 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pistico alla Bingham 796 Se il fluido è reopectico C) Fluido pseudoplastico Se il fluido è tixotropico o sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo por tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo I rimane costante nel tempo I rimane costante nel tempo	700	·	
A) n _T = 64% B) n _T = 68% C) n _T = 74% 790 Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della: A) viscosità B) potenza dissipata C) pressione 791 La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido reopectico C) Fluido pseudoplastico C) Fluido propectico Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentane el tempo Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	789	della turbina è pari a 1400W, mentre la potenza che il fluido cede alla turbina è pari a	A
B) N _T = 68% C) n _T = 74% 790 Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della: A) viscosità B) potenza dissipata C) pressione 791 La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante C) Fluido pisatico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pisatico alla bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido peopectico C) Fluido reopectico C) Fluido peopectico C) Fluido Plomente del peopectico C) Fluido Plomente del peopectico C) Fluido Plomente del peopectico C)		••	
C) n _T = 74% 790			
Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della: A) viscosità B) potenza dissipata C) pressione		B) $n_T = 68\%$	
A) viscosità B) potenza dissipata C) pressione 791 La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		C) $n_T = 74\%$	
B) potenza dissipata C) pressione La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido tixotropico B) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido reopectico C) Fluido reopectico C) Fluido pseudoplastico C) Fluido pseudopl	790	Qualsiasi fluido modifica il suo volume e quindi la sua densità al variare della:	С
C) pressione 791 La superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo Gentifica di attrazione di un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		,	
Testion de la superficie di separazione fra un liquido e un altro fluido non miscibile con esso si comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido reopectico C) Fluido reopectico C) Fluido pseudoplastico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo			
comporta, a causa delle forze di attrazione molecolare, come se fosse una membrana elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido reopectico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido a tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		, ,	
elastica in stato uniforme di tensione, come viene definita questa proprietà? A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? C) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido pseudoplastico C) Fluido reopectico C) Fluido reopectico C) Fluido reopectico C) Fluido pseudoplastico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? B) Fluido reopectico C) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	791		Α
A) Tensione superficiale B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido plastico alla Bingham 795 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		•	
B) Tensione di vapore C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? C) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido pastico C) Fluido reopectico C) Fluido reopectico C) Fluido reopectico C) Fluido pseudoplastico Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo			
C) Tensione limitata 792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido fisatante B) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		,	
792 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido tixotropico B) Fluido pseudoplastico C) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? B) Fluido dilatante B) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		·	
A) Fluido tixotropico B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido plastico alla Bingham 795 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido pseudoplastico C) Fluido reopectico A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	792	,	С
B) Fluido reopectico C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? B) Fluido reopectico C) Fluido reopectico C) Fluido pseudoplastico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminiusice gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo C) rimane costante nel tempo			
C) Fluido plastico alla Bingham 793 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido tixotropico B) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido reopectico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? B) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		·	
A) Fluido tixotropico B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido tixotropico B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		·	
B) Fluido dilatante C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? B) Fluido tixotropico B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? B) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo C) rimane costante nel tempo	793	Quale tra i seguenti è un fluido a comportamento dipendente dal tempo?	Α
C) Fluido plastico alla Bingham 794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		A) Fluido tixotropico	
794 Quale tra i seguenti è un fluido a comportamento indipendente dal tempo? A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		,	
A) Fluido tixotropico B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo			
B) Fluido pseudoplastico C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	794		В
C) Fluido reopectico 795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		·	
795 Quale tra i seguenti è un fluido a comportamento dipendente dal tempo? A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo			
A) Fluido dilatante B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	705		R
B) Fluido reopectico C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	755	· · · · · · · · · · · · · · · · · · ·	
C) Fluido pseudoplastico 796 Se il fluido è tixotropico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		,	
A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		·	
B) aumenta nel tempo fino ad avere valori elevatissimi C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	796	Se il fluido è tixotropico lo sforzo tangenziale:	Α
C) rimane costante nel tempo 797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite	
797 Se il fluido è reopectico lo sforzo tangenziale: A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo		·	
A) diminuisce gradualmente nel tempo per tendere fino ad un valore limite B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo			
B) all'aumentare del tempo continua ad incrementare fino a diventare in qualche caso grandissimi C) rimane costante nel tempo	797	·	В
grandissimi C) rimane costante nel tempo		· · · · · · · · · · · · · · · · · · ·	
C) rimane costante nel tempo		·	
		· ·	
198 Una corrente o aria attraversa un convergente in mono nermanente, caicolare la nortata in 1 🗅	798	Una corrente d'aria attraversa un convergente in modo permanente, calcolare la portata in	Α
massa della sezione terminale sapendo che la densità dell'aria è uguale a a 9 (Kg/m³) la	, , , ,		
velocità pari a 33 m/s e l'area A pari a 16 m².			
A) Qm = 4752 Kg/s		·	
B) Qm = 4552 Kg/s			
C) Qm = 4954 Kg/s		C) Qm = 4954 Kg/s	

Idraulica

799	In una condotta di un impianto di condizionamento entra una corrente con una portata uguale a 0,12 (m³/s) e l'area pari a 120 (m²), determinare la velocità media della corrente. A) V = 0,003 m/s B) V = 0,004 m/s C) V = 0,001 m/s	С
800	Un contenitore cilindrico parzialmente pieno d'olio avente raggio uguale a 10m, in corrispondenza del bordo possiede una velocità di 22m/s in direzione antioraria, si determini la velocità angolare. A) $\omega = 2.2 \text{rad/s}$ B) $\omega = 3 \text{rad/s}$ C) $\omega = 1.4 \text{rad/s}$	A